Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Jon Wilkening"'
Autor:
Jon Wilkening
Publikováno v:
Fluids, Vol 6, Iss 5, p 187 (2021)
We propose a new two-parameter family of hybrid traveling-standing (TS) water waves in infinite depth that evolve to a spatial translation of their initial condition at a later time. We use the square root of the energy as an amplitude parameter and
Externí odkaz:
https://doaj.org/article/f84b2687851347ca99510d68e65aa710
Autor:
Jon Wilkening, Xinyu Zhao
We present a numerical study of spatially quasi-periodic gravity-capillary waves of finite depth in both the initial value problem and traveling wave settings. We adopt a quasi-periodic conformal mapping formulation of the Euler equations, where one-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ea33de81321c067e541a9e320a6915ad
Autor:
Jon Wilkening, Xinyu Zhao
We present a method of detecting bifurcations by locating zeros of a signed version of the smallest singular value of the Jacobian. This enables the use of quadratically convergent root-bracketing techniques or Chebyshev interpolation to locate bifur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a9ee862cb15f61e59b69894a3b57102f
http://arxiv.org/abs/2208.05954
http://arxiv.org/abs/2208.05954
Autor:
Antoine Cerfon, Geoffrey McFadden, Jon Wilkening, Jungpyo Lee, Tonatiuh Sanchez-Vizuet, Lise-Marie Imbert-Gérard, Dhairya Malhotra, Lee Ricketson, Martin Greenwald, Matt Landreman, Jeffrey Freidberg, Mike O'Neil, Felix Parra, Manas Rachh, Travis Askham, Eugenia Kim, Dan Segal, Justin Ball, Di Qi, Andrew Majda
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ad145b993a805de25aa43884c72266f3
https://doi.org/10.2172/1856740
https://doi.org/10.2172/1856740
Autor:
Jon Wilkening, Charles L. Epstein
Publikováno v:
Acta Mathematica Vietnamica. 45:171-181
In this note, we prove several analytical results about generalized Kimura diffusion operators, L, defined on compact manifolds with corners, P. It is shown that the $\mathcal C^{0}(P)$-graph closure of L acting on $\mathcal C^{2}(P)$ always has a co
Autor:
David M. Ambrose, Roberto Camassa, Jeremy L. Marzuola, Richard M. McLaughlin, Quentin Robinson, Jon Wilkening
We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply-connected fluid domain that includes stationary obstacl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::debfa6aacb7e06ac66f6c97da6e343b3
http://arxiv.org/abs/2108.01786
http://arxiv.org/abs/2108.01786
Autor:
Jon Wilkening, Saad Qadeer
Publikováno v:
SIAM Journal on Numerical Analysis. 57:1183-1204
The computation of the Dirichlet-Neumann operator for the Laplace equation is the primary challenge for the numerical simulation of the ideal fluid equations. The techniques used commonly for 2D fluids, such as conformal mapping and boundary integral
Autor:
Xinyu Zhao, Jon Wilkening
We formulate the two-dimensional gravity-capillary water wave equations in a spatially quasi-periodic setting and present a numerical study of solutions of the initial value problem. We propose a Fourier pseudo-spectral discretization of the equation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3581bf0fa1d63885c5ac0dc2d8802fba
Autor:
Jon Wilkening, Xinyu Zhao
We present a numerical study of spatially quasi-periodic traveling waves on the surface of an ideal fluid of infinite depth. This is a generalization of the classic Wilton ripple problem to the case when the ratio of wave numbers satisfying the dispe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cecb1e0f1e7af1e210f488d937da5d5c
Autor:
Jon Wilkening, Eugenia Kim
Publikováno v:
Quarterly of Applied Mathematics. 76:383-405
The dynamics of the magnetic distribution in a ferromagnetic material is governed by the Landau-Lifshitz equation, which is a nonlinear geometric dispersive equation with a nonconvex constraint that requires the magnetization to remain of unit length