Zobrazeno 1 - 10
of 119
pro vyhledávání: '"Jon P Keating"'
Publikováno v:
Baskerville, N P, Keating, J, Mezzadri, F & Najnudel, J 2021, ' The Loss Surfaces of Neural Networks with General Activation Functions ', Journal of Statistical Mechanics:Theory and Experiments, vol. 2021, no. 6 . https://doi.org/10.1088/1742-5468/abfa1e
The loss surfaces of deep neural networks have been the subject of several studies, theoretical and experimental, over the last few years. One strand of work considers the complexity, in the sense of local optima, of high dimensional random functions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e773546e00d4829014e3621ea613e0a1
https://doi.org/10.1088/1742-5468/abfa1e
https://doi.org/10.1088/1742-5468/abfa1e
Autor:
Henrik Ueberschär, Jon P Keating
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2021, ⟨10.1007/s00220-021-04214-8⟩
Communications in Mathematical Physics, Springer Verlag, 2021, ⟨10.1007/s00220-021-04214-8⟩
Whereas much work in the mathematical literature on quantum chaos has focused on phenomena such as quantum ergodicity and scarring, relatively little is known at the rigorous level about the existence of eigenfunctions whose morphology is more comple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ca545b32f48e3ee6d0dab9dd8d2ebd2
http://arxiv.org/abs/2103.13448
http://arxiv.org/abs/2103.13448
Autor:
Jon P Keating, Johannes Forkel
We consider powers of the absolute value of the characteristic polynomial of Haar distributed random orthogonal or symplectic matrices, as well as powers of the exponential of its argument, as a random measure on the unit circle minus small neighborh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e614481147bc6e926bad211b023238be
http://arxiv.org/abs/2008.07825
http://arxiv.org/abs/2008.07825
Publikováno v:
Jonnadula, B, Keating, J & Mezzadri, F 2021, ' Symmetric function theory and unitary invariant ensembles ', Journal of Mathematical Physics, vol. 62, no. 9, 093512 . https://doi.org/10.1063/5.0048364
Representation theory and the theory of symmetric functions have played a central role in Random Matrix Theory in the computation of quantities such as joint moments of traces and joint moments of characteristic polynomials of matrices drawn from the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a15ccb684094ee5cfa8e76b65a0d205
http://arxiv.org/abs/2003.02620
http://arxiv.org/abs/2003.02620
Publikováno v:
Bui, H, Florea, A & Keating, J P 2021, ' Type-I contributions to the one and two level densities of quadratic Dirichlet L-functions over function fields ', Journal of Number Theory, vol. 221, pp. 389-423 . https://doi.org/10.1016/j.jnt.2020.10.021
Journal of Number Theory
Journal of Number Theory
Using the Ratios Conjecture, we write down precise formulas with lower order terms for the one and the two level densities of zeros of quadratic Dirichlet $L$--functions over function fields. We denote the various terms arising as Type-$0$, Type-I an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f396a64185040118385c2a9ce8910b38
Publikováno v:
Mathematische Zeitschrift. 288:167-198
We study the mean square of sums of the kth divisor function $$d_k(n)$$ over short intervals and arithmetic progressions for the rational function field over a finite field of q elements. In the limit as $$q\rightarrow \infty $$ we establish a relati
Publikováno v:
International Journal of Number Theory
We compute the variances of sums in arithmetic progressions of generalized [Formula: see text]-divisor functions related to certain [Formula: see text]-functions in [Formula: see text], in the limit as [Formula: see text]. This is achieved by making
Autor:
Edva Roditty-Gershon, Jon P Keating
Publikováno v:
Keating, J P & Roditty-Gershon, E 2016, ' Arithmetic Correlations Over Large Finite Fields ', International Mathematics Research Notices, vol. 2016, no. 3, pp. 860-874 . https://doi.org/10.1093/imrn/rnv157
The auto-correlations of arithmetic functions, such as the von Mangoldt function, the M\"obius function and the divisor function, are the subject of classical problems in analytic number theory. The function field analogues of these problems have rec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ebfde34e26ae0c195f02be0a1936bb5d
https://ora.ox.ac.uk/objects/uuid:a1e54831-1864-4b8d-beb1-1229c11105c0
https://ora.ox.ac.uk/objects/uuid:a1e54831-1864-4b8d-beb1-1229c11105c0
Autor:
Jon P Keating, Zeév Rudnick
Publikováno v:
Keating, J P & Rudnick, Z 2016, ' Squarefree polynomials and möbius values in short intervals and arithmetic progressions ', Algebra and Number Theory, vol. 10, no. 2, pp. 375-420 . https://doi.org/10.2140/ant.2016.10.375
Algebra Number Theory 10, no. 2 (2016), 375-420
Algebra Number Theory 10, no. 2 (2016), 375-420
We calculate the mean and variance of sums of the M\"obius function and the indicator function of the squarefrees, in both short intervals and arithmetic progressions, in the context of the ring of polynomials over a finite field of $q$ elements, in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b919502b5a5c242e93beb6e3dee615a4
https://ora.ox.ac.uk/objects/uuid:0d26bd96-0fb2-4ce8-a54f-2620fa42da6a
https://ora.ox.ac.uk/objects/uuid:0d26bd96-0fb2-4ce8-a54f-2620fa42da6a
Autor:
Jon P Keating, Brian Conrey
Publikováno v:
Proceedings. Mathematical, Physical, and Engineering Sciences
Conrey, B & Keating, J P 2016, ' Pair correlation and twin primes revisited ', Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 472, no. 2194, 20160548 . https://doi.org/10.1098/rspa.2016.0548
Conrey, B & Keating, J P 2016, ' Pair correlation and twin primes revisited ', Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 472, no. 2194, 20160548 . https://doi.org/10.1098/rspa.2016.0548
We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmeti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf02100adae21c71dced5a02bfd7d218
https://doi.org/10.1098/rspa.2016.0548
https://doi.org/10.1098/rspa.2016.0548