Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Jon Goenetxea"'
Autor:
Unai Elordi, Chiara Lunerti, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo, Alvaro Bertelsen, Ignacio Arganda-Carreras
Publikováno v:
Information, Vol 12, Iss 12, p 532 (2021)
In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e
Externí odkaz:
https://doaj.org/article/86894ac74ee44ebf90b50b318bf32746
Publikováno v:
IET Computer Vision, Vol 10, Iss 4, Pp 299-307 (2016)
In this study, the authors present a learning‐free method for inferring kinematically plausible three‐dimensional (3D) human body poses contextualised in a predefined 3D world, given a set of 2D body features extracted from monocular images. This
Externí odkaz:
https://doaj.org/article/54a43cc392c64b4b8606487b7c5e0f94
Autor:
Ignacio Arganda-Carreras, Jon Goenetxea, Oihana Otaegui, Unai Elordi, Luis Unzueta, Sergio Sánchez-Carballido
Publikováno v:
IEEE Software. 38:81-87
We provide a novel decomposition methodology from the current MLPerf benchmark to the serverless function execution model. We have tested our approach in Amazon Lambda to benchmark the processing capabilities of OpenCV and OpenVINO inference engines.
Autor:
Nerea Aranjuelo, Jon Goenetxea, Luis Unzueta, Ignacio Arganda-Carreras, Unai Elordi, Alvaro Bertelsen
Publikováno v:
KES
25th International Conference on Knowledge-Based and Intelligent Information & Engineering (KES 2021)
25th International Conference on Knowledge-Based and Intelligent Information & Engineering (KES 2021)
Face recognition provides a desirable solution for authentication and surveillance in Internet of Things platforms for elderly care. However, its inclusion is challenging because of the possibly reduced interaction capabilities of users, the high var
Publikováno v:
Multimedia Tools and Applications. 79:12373-12400
Face fitting methods align deformable models to faces on images using the information given by the image pixels. However, most algorithms are designed to be used in desktop personal computers (PC), or hardware with significant computational power. Th
Autor:
Jon Goenetxea, Ignacio Arganda-Carreras, Luis Unzueta, Oihana Otaegui, Unai Elordi, Estíbaliz Loyo
Publikováno v:
Addi. Archivo Digital para la Docencia y la Investigación
Universidad de Cantabria (UC)
VISIGRAPP (4: VISAPP)
instname
Scopus-Elsevier
Universidad de Cantabria (UC)
VISIGRAPP (4: VISAPP)
instname
Scopus-Elsevier
[EN] We present an approach to optimally deploy Deep Neural Networks (DNNs) in serverless cloud architectures. A serverless architecture allows running code in response to events, automatically managing the required computing resources. However, thes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::679332e0ca67330948e9ebc2909985f7
http://hdl.handle.net/10810/52897
http://hdl.handle.net/10810/52897
Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance
Autor:
Marcos Nieto, Luis Unzueta, Oihana Otaegui, Estíbaliz Loyo, Jon Goenetxea, Nerea Aranjuelo, David Montero
Publikováno v:
VISIGRAPP (5: VISAPP)
Scopus-Elsevier
Scopus-Elsevier
Publikováno v:
IET Computer Vision. 10:299-307
In this study, the authors present a learning-free method for inferring kinematically plausible three-dimensional (3D) human body poses contextualised in a predefined 3D world, given a set of 2D body features extracted from monocular images. This con
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
In this paper we present a robust and lightweight method for the automatic fitting of deformable 3D face models on facial images. Popular fitting techniques such as those based on statistical models of shape and appearance require a training stage ba
Autor:
Alejandro Clemotte, Harbil Arregui, Miguel Ángel Velasco, Luis Unzueta, Jon Goenetxea, Unai Elordi, Eduardo Rocon, Ramón Ceres, Javier Bengoechea, Iosu Arizkuren, Eduardo Jauregui
Publikováno v:
RUC. Repositorio da Universidade da Coruña
Universitat Oberta de Catalunya (UOC)
Universitat Oberta de Catalunya (UOC)
[Abstract] This paper presents a pilot study completed in the framework of the INTERAAC project. The aim of the project is to develop a new human-computer interaction (HCI) solution based on eye-gaze estimation from webcam images for people with moto
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b3028d2ab050075d9a2da1c7c1dd4d5
http://hdl.handle.net/2183/29567
http://hdl.handle.net/2183/29567