Zobrazeno 1 - 10
of 267
pro vyhledávání: '"Johnson, Devin S"'
Methods for population estimation and inference have evolved over the past decade to allow for the incorporation of spatial information when using capture-recapture study designs. Traditional approaches to specifying spatial capture-recapture (SCR) m
Externí odkaz:
http://arxiv.org/abs/2305.04141
Ecologists increasingly rely on Bayesian methods to fit capture-recapture models. Capture-recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for su
Externí odkaz:
http://arxiv.org/abs/2205.04453
Publikováno v:
In Spatial Statistics March 2024 59
We propose a multistage method for making inference at all levels of a Bayesian hierarchical model (BHM) using natural data partitions to increase efficiency by allowing computations to take place in parallel form using software that is most appropri
Externí odkaz:
http://arxiv.org/abs/2010.12568
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Bayesian models provide recursive inference naturally because they can formally reconcile new data and existing scientific information. However, popular use of Bayesian methods often avoids priors that are based on exact posterior distributions resul
Externí odkaz:
http://arxiv.org/abs/1807.10981
Autor:
Sollmann, Rahel, Eaton, Mitchell Joseph, Link, William A., Mulondo, Paul, Ayebare, Samuel, Prinsloo, Sarah, Plumptre, Andrew J., Johnson, Devin S.
Publikováno v:
Ecological Applications, 2021 Mar 01. 31(2), 1-14.
Externí odkaz:
https://www.jstor.org/stable/27029178
The analysis of telemetry data is common in animal ecological studies. While the collection of telemetry data for individual animals has improved dramatically, the methods to properly account for inherent uncertainties (e.g., measurement error, depen
Externí odkaz:
http://arxiv.org/abs/1705.10310
Gaussian processes are a fundamental statistical tool used in a wide range of applications. In the spatio-temporal setting, several families of covariance functions exist to accommodate a wide variety of dependence structures arising in different app
Externí odkaz:
http://arxiv.org/abs/1703.02112