Zobrazeno 1 - 10
of 59
pro vyhledávání: '"John R. Singler"'
Publikováno v:
SIAM Journal on Numerical Analysis. 61:83-109
Autor:
Sarah Locke Eskew, John R. Singler
Publikováno v:
Advances in Computational Mathematics. 49
Publikováno v:
Computer Methods in Applied Mechanics and Engineering. 405:115837
In [ESAIM: M2AN, 54(2020), 2229-2264], we proposed an HDG method to approximate the solution of a tangential boundary control problem for the Stokes equations and obtained an optimal convergence rate for the optimal control {that reflects its global
Autor:
Hiba Fareed, John R. Singler
Publikováno v:
Applied Numerical Mathematics. 144:223-233
In our earlier work [Fareed et al., Comput. Math. Appl. 75 (2018), no. 6, 1942-1960], we developed an incremental approach to compute the proper orthogonal decomposition (POD) of PDE simulation data. Specifically, we developed an incremental algorith
Publikováno v:
Journal of Scientific Computing. 81:623-648
We investigated an hybridizable discontinuous Galerkin (HDG) method for a convection diffusion Dirichlet boundary control problem in our earlier work [SIAM J. Numer. Anal. 56 (2018) 2262-2287] and obtained an optimal convergence rate for the control
Publikováno v:
Journal of Scientific Computing. 79:1777-1800
We propose the interpolatory hybridizable discontinuous Galerkin (Interpolatory HDG) method for a class of scalar parabolic semilinear PDEs. The Interpolatory HDG method uses an interpolation procedure to efficiently and accurately approximate the no
Publikováno v:
SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis, 2021, 59 (4), pp.2163-2196. ⟨10.1137/20m1371798⟩
SIAM Journal on Numerical Analysis, 2021, 59 (4), pp.2163-2196. ⟨10.1137/20m1371798⟩
In this paper, we resolve several long standing issues dealing with optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order modeling of the heat equation. In particular, we study the role played by difference qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::73df7b87317f180cc6ff2747282573f9
http://arxiv.org/abs/2010.03750
http://arxiv.org/abs/2010.03750
In Chen et al. (J. Sci. Comput. 81(3): 2188–2212, 2019), we considered a superconvergent hybridizable discontinuous Galerkin (HDG) method, defined on simplicial meshes, for scalar reaction-diffusion equations and showed how to define an interpolato
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f48ce19887ef3ecbbf08d8a9bfd3f45c
http://arxiv.org/abs/2009.00704
http://arxiv.org/abs/2009.00704
Publikováno v:
Advances in Applied Mathematics and Mechanics. 10:797-818
We consider a distributed optimal control problem governed by an elliptic PDE, and propose an embedded discontinuous Galerkin (EDG) method to approximate the solution. We derive optimal a priori error estimates for the state, dual state, the optimal
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems. 29:1263-1274
In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control condi