Zobrazeno 1 - 6
of 6
pro vyhledávání: '"John R. Haddock"'
Autor:
John R. Haddock
Publikováno v:
Advances in Nonlinear Dynamics ISBN: 9781315136875
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::74b2f8d771a85eb9104aa4f57aaa22cf
https://doi.org/10.1201/9781315136875-29
https://doi.org/10.1201/9781315136875-29
Autor:
John R. Haddock, R. C. Grimmer
Publikováno v:
Annali di Matematica Pura ed Applicata. 99:143-153
The stability properties of subsets of Rn are examined using a family of Liapunov functions and the invariance properties of the sets.
Publikováno v:
東北數學雜誌. Second series = Tohoku mathematical journal. Second series. 41(4):689-710
Autor:
John R. Haddock
Publikováno v:
Transactions of the American Mathematical Society. 231:83-92
Let X be a Banach space and let C = C ( [ − r , 0 ] , X ) C = C([ - r,0],X) denote the space of continuous functions from [ − r , 0 ] [ - r,0] to X. In this paper the problem of convergence in norm of solutions of the nonlinear functional differe
Autor:
John R. Haddock
Publikováno v:
SIAM Journal on Mathematical Analysis. 5:569-573
In this paper sufficient conditions are given for all bounded solutions of $x'(t) = - a(t)f(x(t - r(t)))$ to tend to zero as $t \to \infty $. Also, conditions are given which insure the existence of nontrivial bounded solutions.
Autor:
John R. Haddock
Publikováno v:
Proceedings of the American Mathematical Society. 31:209-209
By placing certain conditions on /(/, x) for the system of ordinary differential equations (1) x'=/(/,*), f(t, 0) = 0, Marachkoff weakened the conditions on the Liapunov function of the classical asymptotic stability theorem of Liapunov theory and ob