Zobrazeno 1 - 10
of 37
pro vyhledávání: '"John R. Erickson"'
Autor:
Qingzhou Wan, Marco Rasetto, Mohammad T. Sharbati, John R. Erickson, Sridhar Reddy Velagala, Matthew T. Reilly, Yiyang Li, Ryad Benosman, Feng Xiong
Publikováno v:
Advanced Intelligent Systems, Vol 3, Iss 9, Pp n/a-n/a (2021)
Neuromorphic computing has the great potential to enable faster and more energy‐efficient computing by overcoming the von Neumann bottleneck. However, most emerging nonvolatile memory (NVM)‐based artificial synapses suffer from insufficient preci
Externí odkaz:
https://doaj.org/article/3a8cbac84ba24e5693c5e042951e93d8
Autor:
Qingzhou Wan, Peng Zhang, Qiming Shao, Mohammad T. Sharbati, John R. Erickson, Kang L. Wang, Feng Xiong
Publikováno v:
APL Materials, Vol 7, Iss 10, Pp 101107-101107-8 (2019)
Neuromorphic computing has recently emerged as a promising paradigm to overcome the von-Neumann bottleneck and enable orders of magnitude improvement in bandwidth and energy efficiency. However, existing complementary metal-oxide-semiconductor (CMOS)
Externí odkaz:
https://doaj.org/article/519c4a18ef8548e9a9c19651a478fb89
Autor:
John R. Erickson, Nicholas A. Nobile, Daniel Vaz, Gouri Vinod, Carlos A. Ríos Ocampo, Yifei Zhang, Juejun Hu, Steven A. Vitale, Feng Xiong, Nathan Youngblood
Publikováno v:
Optical Materials Express. 13:1677
Optical phase-change materials have enabled nonvolatile programmability in integrated photonic circuits by leveraging a reversible phase transition between amorphous and crystalline states. To control these materials in a scalable manner on-chip, hea
Publikováno v:
Optics express. 30(8)
Phase change chalcogenides such as Ge2Sb2Te5 (GST) have recently enabled advanced optical devices for applications such as in-memory computing, reflective displays, tunable metasurfaces, and reconfigurable photonics. However, designing phase change o
Autor:
Paul R. Prucnal, Jeffrey M. Shainline, Martin Salinga, Huaiyu Meng, Hao Jiang, Alberto Salleo, Feng Xiong, Damien Querlioz, Qiangfei Xia, Dmitri B. Strukov, John R. Erickson, Can Li, Zengguang Cheng, Karl K. Berggren, Arijit Raychowdhury, Miguel Angel Lastras-Montano, Advait Madhavan, Jennifer L. M. Rupp, Kwang-Ting Cheng, Thomas Ferreira de Lima, Charles Roques-Carmes, A. Alec Talin, Yuchao Yang, Thomas Mikolajick, Peng Lin, Shisheng Xiong, Konstantin K. Likharev, Jabez J. McClelland, Bhavin J. Shastri, Stephen S. Nonnenmann, Shuang Pi, Yu Chen, Alexander N. Tait, Kenneth Segall, Jianhua Yang, Matthew W. Daniels, Harish Bhaskaran, Deep Jariwala, Suman Datta, James Alexander Liddle, Yichen Shen, Kaushik Roy, Han Wang, Nanbo Gong, Brian D. Hoskins
Publikováno v:
Nanotechnology, 32 (1)
Nanotechnology
Nanotechnology
Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85be51bbb986498f81e114a9e64c1fda
https://hdl.handle.net/20.500.11850/450413
https://hdl.handle.net/20.500.11850/450413
Autor:
Timothy A. Burton, Deirdre M. Dethe, John R. Erickson, Joseph P. Frost, Lynette Z. Morelan, William R. Rush, John L. Thornton, Cydney A. Weiland, Leon F. Neuenschwander
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::26e094dc1051b3c53f64f8c42385b018
https://doi.org/10.1201/9780429104404-15
https://doi.org/10.1201/9780429104404-15
Autor:
Qingzhou Wan, Kang L. Wang, Mohammad Taghi Sharbati, Peng Zhang, John R. Erickson, Feng Xiong, Qiming Shao
Publikováno v:
DRC
Neuromorphic computing has emerged as a new computing paradigm to tackle the von Neumann bottleneck and enable a more energy-efficient processing of today's large-scale datasets, especially for data-intensive applications such as image and pattern re
Autor:
Sridhar Reddy Velagala, Yiyang Li, Qingzhou Wan, Feng Xiong, Ryad Benosman, Mohammad Taghi Sharbati, Marco Rasetto, John R. Erickson, Matthew T. Reilly
Publikováno v:
Advanced Intelligent Systems, Vol 3, Iss 9, Pp n/a-n/a (2021)
Neuromorphic computing has the great potential to enable faster and more energy‐efficient computing by overcoming the von Neumann bottleneck. However, most emerging nonvolatile memory (NVM)‐based artificial synapses suffer from insufficient preci
Autor:
Haitao Liu, Anqin Xu, Jun Chen, Liwei Hui, Ruobing Bai, John R. Erickson, Feng Xiong, Yanhao Du, Yang Hu
Publikováno v:
Advanced Functional Materials. 31:2005940
Publikováno v:
Assessing Forest Ecosystem Health in the Inland West ISBN: 9781315137797
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::36e9311b84acc807c9c329d2b3f9a499
https://doi.org/10.1201/9781315137797-8
https://doi.org/10.1201/9781315137797-8