Zobrazeno 1 - 10
of 11
pro vyhledávání: '"John M. Pfeifer"'
Autor:
Alvaro E. Ulloa-Cerna, Linyuan Jing, John M. Pfeifer, Sushravya Raghunath, Jeffrey A. Ruhl, Daniel B. Rocha, Joseph B. Leader, Noah Zimmerman, Greg Lee, Steven R. Steinhubl, Christopher W. Good, Christopher M. Haggerty, Brandon K. Fornwalt, Ruijun Chen
Publikováno v:
Circulation. 146:36-47
Background: Timely diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. While population screening with echocardiography is impractical, ECG-based prediction models can help target high-risk patients. We de
Autor:
John M. Pfeifer, Ashraf T. Hafez, Daniel B. Rocha, Christopher W. Good, Arun Nemani, Linyuan Jing, Jeffery A. Ruhl, Nathan J. Stoudt, Kipp W. Johnson, Gargi Schneider, Braxton Lagerman, Alvaro E. Ulloa-Cerna, Tanner Carbonati, Brandon K. Fornwalt, Christoph J. Griessenauer, Christopher M. Haggerty, Dustin N. Hartzel, Sushravya Raghunath, David P. vanMaanen, Noah Zimmerman, Joseph B. Leader, H. Lester Kirchner
Publikováno v:
Circulation
Supplemental Digital Content is available in the text.
Background: Atrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to fin
Background: Atrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to fin
Autor:
Sushravya Raghunath, John M. Pfeifer, Christopher R. Kelsey, Arun Nemani, Jeffrey A. Ruhl, Dustin N. Hartzel, Alvaro E. Ulloa Cerna, Linyuan Jing, David P. vanMaanen, Joseph B. Leader, Gargi Schneider, Thomas B. Morland, Ruijun Chen, Noah Zimmerman, Brandon K. Fornwalt, Christopher M. Haggerty
Publikováno v:
Journal of electrocardiology. 76
Several large trials have employed age or clinical features to select patients for atrial fibrillation (AF) screening to reduce strokes. We hypothesized that a machine learning (ML) model trained to predict AF risk from 12‑lead electrocardiogram (E
Autor:
Daniel B. Rocha, Christopher M. Haggerty, Joseph B. Leader, John M. Pfeifer, Linyuan Jing, Christopher W. Good, Alvaro E. Ulloa-Cerna, Brandon K. Fornwalt, Sushravya Raghunath, Greg Lee, Noah Zimmerman, Steven R. Steinhubl, Ruijun Chen, Jeffrey Ruhl
BackgroundEarly diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. While population screening with echocardiography is impractical, electrocardiogram (ECG)-based prediction models can help target high-ris
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6f917ede73f46ee32f472b3b59f897aa
https://doi.org/10.1101/2021.10.06.21264669
https://doi.org/10.1101/2021.10.06.21264669
Autor:
John M. Pfeifer, Brandon K. Fornwalt
Publikováno v:
Circulation. Cardiovascular imaging. 14(6)
Autor:
Christopher M. Haggerty, Sushravya Raghunath, Alvaro E. Ulloa Cerna, Linyuan Jing, Jeffrey A. Ruhl, Dustin N. Hartzel, Christopher R. Kelsey, Daniel B. Rocha, Noah Zimmerman, Steven Steinhubl, Thomas B. Morland, Ruijun Chen, John M. Pfeifer, Brandon K. Fornwalt
Publikováno v:
Journal of Electrocardiology. 73:3
Autor:
Linyuan Jing, John M. Pfeifer, Dustin N. Hartzel, Christoph J. Griessenauer, Christopher W. Good, David P. vanMaanen, Joseph B. Leader, Sushravya Raghunath, Alvaro Ulloa, Tanner Carbonati, Jeffrey Ruhl, Brandon K. Fornwalt, Christopher M. Haggerty, H. Lester Kirchner, Noah Zimmerman, Arun Nemani, Ashraf T. Hafez, Kipp W. Johnson, Nathan J. Stoudt
Publikováno v:
Circulation. 142
Background: Atrial fibrillation (AF) is associated with stroke, especially when AF goes undetected. Deep neural networks (DNN) can predict incident AF from a 12-lead resting ECG. We hypothesize that use of a DNN to predict new onset AF from an ECG ma
Autor:
Dustin N. Hartzel, Christopher M. Haggerty, Bern E. McCarty, Ashraf T. Hafez, John M. Pfeifer, Joseph B. Leader, Linyuan Jing, Brandon K. Fornwalt, Christopher W. Good, H. Lester Kirchner, Tanner Carbonati, Kipp W. Johnson, Arun Nemani, Alvaro E. Ulloa-Cerna, Nathan J. Stoudt, David P. vanMaanen, Christoph J. Griessenauer, Jeffery A. Ruhl, Noah Zimmerman, Sushravya Raghunath
BackgroundAtrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new onset AF could be predicted, targeted population screening could be used to find it early. We hypothesized that a deep neural netw
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fa1f551af5c51c1be8281e25f59822d
https://doi.org/10.1101/2020.04.23.20067967
https://doi.org/10.1101/2020.04.23.20067967
Autor:
Joseph B. Leader, Martin C. Stumpe, Brandon K. Fornwalt, Sushravya Raghunath, Ashraf T. Hafez, Dustin N. Hartzel, Christopher M. Haggerty, H. Lester Kirchner, Aalpen A. Patel, Kipp W. Johnson, Christopher W. Good, Dominik Beer, Linyuan Jing, Alvaro E. Ulloa Cerna, Arun Nemani, David P. vanMaanen, Brian P. Delisle, Amro Alsaid, Tanner Carbonati, Joshua V. Stough, John M. Pfeifer, Katelyn Young
Publikováno v:
Nature medicine. 26(6)
The electrocardiogram (ECG) is a widely used medical test, consisting of voltage versus time traces collected from surface recordings over the heart1. Here we hypothesized that a deep neural network (DNN) can predict an important future clinical even
Publikováno v:
J Womens Health (Larchmt)
Background: Cardiovascular care sex differences are controversial. We examined sex differences in management and clinical outcomes among patients undergoing noninvasive testing for ischemic heart disease (IHD). Methods: In a rural integrated healthca