Zobrazeno 1 - 10
of 94
pro vyhledávání: '"John H. J. Einmahl"'
Autor:
Philippe Berthet, John H. J. Einmahl
Publikováno v:
The Annals of Statistics
The Annals of Statistics, 2022, 50 (3), pp.1423-1446. ⟨10.1214/21-AOS2157⟩
The Annals of Statistics, 50(3), 1423-1446. Institute of Mathematical Statistics
The Annals of Statistics, 2022, 50 (3), pp.1423-1446. ⟨10.1214/21-AOS2157⟩
The Annals of Statistics, 50(3), 1423-1446. Institute of Mathematical Statistics
Given n independent random vectors with common density f on R d , we study the weak convergence of three empirical-measure based estimators of the convex λ-level set L λ of f , namely the excess mass set, the minimum volume set and the maximum prob
Autor:
John H. J. Einmahl, Yi He
Publikováno v:
Journal of Business & Economic Statistics, 41(1), 255-269. American Statistical Association
We develop a universal econometric formulation of empirical power laws possibly driven by parameter heterogeneity. Our approach extends classical extreme value theory to specifying the tail behavior of the empirical distribution of a general dataset
Autor:
John H. J. Einmahl, Yi He
Publikováno v:
SSRN Electronic Journal.
Autor:
John H. J. Einmahl, Johan Segers
Publikováno v:
Annals of Statistics, Vol. 49, no. 5, p. 2672-2696 (2021)
The Annals of Statistics, 49(5), 2672-2696. Institute of Mathematical Statistics
The Annals of Statistics, 49(5), 2672-2696. Institute of Mathematical Statistics
For multivariate distributions in the domain of attraction of a max-stable distribution, the tail copula and the stable tail dependence function are equivalent ways to capture the dependence in the upper tail. The empirical versions of these function
Publikováno v:
The Annals of Statistics, 50(1), 30-52. Institute of Mathematical Statistics
Annals of Statistics, 50(1):50(1), 30-52. Institute of Mathematical Statistics
Annals of Statistics, 50(1):50(1), 30-52. Institute of Mathematical Statistics
The statistical theory of extremes is extended to observations that are non-stationary and not independent. The non-stationarity over time and space is controlled via the scedasis (tail scale) in the marginal distributions. Spatial dependence stems f
Publikováno v:
Journal of Business & Economic Statistics, 39(4), 907-919. American Statistical Association
Journal of Business and Economic Statistics, 39(4), 907-919. Taylor & Francis Ltd
Journal of Business and Economic Statistics, 39(4), 907-919. Taylor & Francis Ltd
In this paper, we propose a test for the multivariate regular variation model. The test is based on testing whether the extreme value indices of the radial component conditional on the angular component falling in different subsets are the same. Comb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c5f25aaf590ad723bf30b6170e8a8e6
https://research.tilburguniversity.edu/en/publications/084cc081-616a-4111-80ac-ebb96bef7083
https://research.tilburguniversity.edu/en/publications/084cc081-616a-4111-80ac-ebb96bef7083
Publikováno v:
Journal of the American Statistical Association, 114(527), 1075-1080. Taylor and Francis Ltd.
There is no scientific consensus on the fundamental question whether the probability distribution of the human life span has a finite endpoint or not and, if so, whether this upper limit changes over time. Our study uses a unique dataset of the ages
Publikováno v:
SSRN Electronic Journal.
We consider extreme value analysis in a semi-supervised setting, where we observe, next to the n data on the target variable, n +m data on one or more covariates. This is called the semi-supervised model with n labeled and m unlabeled data. By exploi
Autor:
Liang Peng, John H. J. Einmahl
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Journal of Business & Economic Statistics. American Statistical Association
A novel, general two-sample hypothesis testing procedure is established for testing the equality of tail copulas associated with bivariate data. More precisely, using an ingenious transformation of a natural two-sample tail copula process, a test pro