Zobrazeno 1 - 10
of 12
pro vyhledávání: '"John E Beaver"'
Autor:
Han Yan, Kavitha Venkatesan, John E Beaver, Niels Klitgord, Muhammed A Yildirim, Tong Hao, David E Hill, Michael E Cusick, Norbert Perrimon, Frederick P Roth, Marc Vidal
Publikováno v:
PLoS ONE, Vol 5, Iss 8, p e12139 (2010)
Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the i
Externí odkaz:
https://doaj.org/article/39af1558626d4bb6a5d059593eae7bd8
Autor:
Weidong Tian, Murat Tasan, Judith A. Blake, Frederick P. Roth, Julie Dunham, John E. Beaver, Harold J. Drabkin, Hon Nian Chua
Publikováno v:
G3: Genes|Genomes|Genetics
The body of human genomic and proteomic evidence continues to grow at ever-increasing rates, while annotation efforts struggle to keep pace. A surprisingly small fraction of human genes have clear, documented associations with specific functions, and
Autor:
Gabriel Musso, Quaid Morris, Eva Plovie, Khalid Zuberi, John E. Beaver, Harold Rodriguez, Calum A. MacRae, Frederick P. Roth, Julie Dunham, Murat Tasan, Leonard I. Zon, Christian Mosimann, Logan A. Carr, Hon Nian Chua
Publikováno v:
Development
Comprehensive functional annotation of vertebrate genomes is fundamental to biological discovery. Reverse genetic screening has been highly useful for determination of gene function, but is untenable as a systematic approach in vertebrate model organ
Autor:
Pernille Haste-Andersen, Yohan Kim, Philip E. Bourne, Sune Frankild, Julia Ponomarenko, Zhanyang Zhu, Jason A. Greenbaum, Søren Buus, Alessandro Sette, Claus Lundegaard, Huynh-Hoa Bui, Ole Lund, Björn Peters, Qing Zhang, John E. Beaver, Peng Wang, Morten Nielsen
Publikováno v:
Zhang, Q, Wang, P, Kim, Y, Andersen, P, Beaver, J, Bourne, P, Bui, H-H, Buus, S, Pletscher-Frankild, S, Greenbaum, J, Lund, O, Lundegaard, C, Nielsen, M, Ponomarenko, J, Sette, A, Zhu, Z & Peters, B 2008, ' Immune epitope database analysis resource (IEDB-AR) ', Nucleic Acids Research, vol. W36, pp. W513-W518 . https://doi.org/10.1093/nar/gkn254
Nucleic Acids Research
Nucleic Acids Research
We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7849de710915a1b54aaaf4231aad5eff
https://orbit.dtu.dk/en/publications/842ec4f8-9596-4cef-8232-3007a0a11bf4
https://orbit.dtu.dk/en/publications/842ec4f8-9596-4cef-8232-3007a0a11bf4
Publikováno v:
Immunome Research
Background Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data Ba
Autor:
Timothy P. Hughes, Francis D. Gibbons, Murat Tasan, Frederick P. Roth, Weidong Tian, John E. Beaver
Publikováno v:
Bioinformatics
Summary: Computational gene function prediction can serve to focus experimental resources on high-priority experimental tasks. FuncBase is a web resource for viewing quantitative machine learning-based gene function annotations. Quantitative annotati
Publikováno v:
Bioinformatics. 25:3043-3044
Summary: FuncAssociate is a web application that discovers properties enriched in lists of genes or proteins that emerge from large-scale experimentation. Here we describe an updated application with a new interface and several new features. For exam
Publikováno v:
Bioinformatics. 23:2491-2492
Summary: Con-Struct Map is a graphical tool for the comparative study of protein structures. The tool detects potential conserved residue contacts shared by multiple protein structures by superimposing their contact maps according to a multiple struc
Autor:
Michael E. Cusick, Han Yan, Niels Klitgord, Marc Vidal, Tong Hao, Norbert Perrimon, Frederick P. Roth, David E. Hill, John E. Beaver, Kavitha Venkatesan, Muhammed A. Yildirim
Publikováno v:
PLoS ONE, Vol 5, Iss 8, p e12139 (2010)
PLoS ONE
PLoS ONE
Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the i
Publikováno v:
Immunome Research. 3:3
Background: Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data B