Zobrazeno 1 - 10
of 202
pro vyhledávání: '"John A. Gunnels"'
Autor:
John A. Gunnels, Jane A. Leopold, John Gounley, Priya Nair, Amanda Randles, W. D. Krauss, Tomas Oppelstrup, Rafeed Chaudhury, Erik W. Draeger, David H. Frakes
Publikováno v:
Journal of Biomechanics. 82:28-37
The ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the A
Autor:
Mathialakan Thavappiragasam, Gilchan Park, Kendall G. Byler, Leighton Coates, Laura Zanetti-Polzi, Jeffrey M. Larkin, Junqi Yin, John A. Gunnels, Omar Demerdash, Loukas Petridis, Ada Sedova, Carlos Soto, Aaron Scheinberg, Mai Zahran, Scott LeGrand, Jens Glaser, Jerome Baudry, Stephan Irle, Samuel Yen-Chi Chen, Andrey Kovalevsky, Isabella Daidone, Julie C. Mitchell, Arvind Ramanathan, Connor J. Cooper, Duncan Poole, V. Q. Vuong, Diogo Santos-Martins, David M. Rogers, Shinjae Yoo, Y. Shen, Oscar Hernandez, A. Tsaris, Swen Boehm, Debsindhu Bhowmik, Travis J Lawrence, Daniel W. Kneller, Shih-Hsien Liu, Jeremy C. Smith, Line Pouchard, Matthew B. Baker, Stefano Forli, Sally R. Ellingson, Anna Pavlova, Rupesh Agarwal, Micholas Dean Smith, Atanu Acharya, James C. Gumbart, Andreas F. Tillack, John D. Eblen, Josh V. Vermaas, Jerry M. Parks
Publikováno v:
Journal of chemical information and modeling 60 (2020): 5832–5852. doi:10.1021/acs.jcim.0c01010
info:cnr-pdr/source/autori:Acharya A.; Agarwal R.; Baker M.B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K.G.; Chen S.Y.; Coates L.; Cooper C.J.; Demerdash O.; Daidone I.; Eblen J.D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J.C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D.W.; Kovalevsky A.; Larkin J.; Lawrence T.J.; Legrand S.; Liu S.-H.; Mitchell J.C.; Park G.; Parks J.M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D.M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J.C.; Smith M.D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A.F.; Vermaas J.V.; Vuong V.Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L./titolo:Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19/doi:10.1021%2Facs.jcim.0c01010/rivista:Journal of chemical information and modeling/anno:2020/pagina_da:5832/pagina_a:5852/intervallo_pagine:5832–5852/volume:60
Journal of Chemical Information and Modeling
ChemRxiv
article-version (number) 1
article-version (status) pre
info:cnr-pdr/source/autori:Acharya A.; Agarwal R.; Baker M.B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K.G.; Chen S.Y.; Coates L.; Cooper C.J.; Demerdash O.; Daidone I.; Eblen J.D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J.C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D.W.; Kovalevsky A.; Larkin J.; Lawrence T.J.; Legrand S.; Liu S.-H.; Mitchell J.C.; Park G.; Parks J.M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D.M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J.C.; Smith M.D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A.F.; Vermaas J.V.; Vuong V.Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L./titolo:Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19/doi:10.1021%2Facs.jcim.0c01010/rivista:Journal of chemical information and modeling/anno:2020/pagina_da:5832/pagina_a:5852/intervallo_pagine:5832–5852/volume:60
Journal of Chemical Information and Modeling
ChemRxiv
article-version (number) 1
article-version (status) pre
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79326e7712c0be5402b46e8c6ef2b9fd
Autor:
John A. Gunnels, Brian Kingsbury, Vernon Austel, I-Hsin Chung, Upendra Chauhari, Tara N. Sainath, Michael Picheny, Bhuvana Ramabhadran
Publikováno v:
SC
Deep Neural Networks (DNNs) have recently been shown to significantly outperform existing machine learning techniques in several pattern recognition tasks. DNNs are the state-of-the-art models used in image recognition, object detection, classificati
Autor:
Martin Schulz, Ulrike Meier Yang, David F. Richards, Tong Chen, Shiv Sundram, Todd Gamblin, Shelby Lockhart, Phil Regier, David Beckingsale, Ed Zywicz, Ruipeng Li, Giacomo Domeniconi, James C. Sexton, Bob Walkup, Jarom Nelson, Carlos Costa, Hui-Fang Wen, Ramesh Pankajakshan, John A. Gunnels, Xiaohua Zhang, Brian Van Essen, Kathryn M. O'Brien, I-Feng W. Kuo, Johann Dahm, Guillaume Thomas-Collignon, Bert Still, Naoya Maruyama, Jamie A. Bramwell, David Boehme, Kathleen Shoga, Carol S. Woodward, Howard A. Scott, M. P. Katz, Ian Karlin, T Epperly, Tzanio V. Kolev, Eun Kyung Lee, Steven H. Langer, Christopher Ward, David J. Gardner, Sara I. L. Kokkila-Schumacher, Christopher Young, Kevin O'Brien, Barry Chen, Björn Sjögreen, Jose R. Brunheroto, Claudia Misale, Roger Pearce, Guojing Cong, Matthew Legendre, Lu Wang, Jaime H. Moreno, Kathleen McCandless, Cyril Zeller, Rao Nimmakayala, Bronis R. de Supinski, Xinyu Que, Sorin Bastea, Robert D. Falgout, Peng Wang, Charway R. Cooper, Aaron Fisher, Jim Brase, R. Neely, David Appelhans, Alexey Voronin, James N. Glosli, Slaven Peles, Pei-Hung Lin, Tony Degroot, Hai Le, Daniel A. White, Levi Barnes, Steve Rennich, Yoonho Park, Peter D. Barnes, Bob Anderson, Jonathan J. Wong, Robert C. Blake
Publikováno v:
SC
Productivity from day one on supercomputers that leverage new technologies requires significant preparation. An institution that procures a novel system architecture often lacks sufficient institutional knowledge and skills to prepare for it. Thus, t
Autor:
Michael Kistler, Mikhail Smelyanskiy, Tze Meng Low, Vernon Austel, Robert A. van de Geijn, Lee Killough, Tyler M. Smith, Field G. Van Zee, John A. Gunnels, Francisco D. Igual, Bryan Marker, Xianyi Zhang
Publikováno v:
ACM Transactions on Mathematical Software. 42:1-19
BLIS is a new software framework for instantiating high-performance BLAS-like dense linear algebra libraries. We demonstrate how BLIS acts as a productivity multiplier by using it to implement the level-3 BLAS on a variety of current architectures. T
Autor:
Fabio Checconi, Daniele Buono, John A. Gunnels, Tai-Ching Tuan, Fabrizio Petrini, Chris Long, Xinyu Que
Publikováno v:
Computer. 48:26-34
Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shar
Autor:
Xavier Andrade, Abhinav Bhatele, John A. Gunnels, Alfredo A. Correa, Erik W. Draeger, Andre Schleife
Publikováno v:
IPDPS
We present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-depend
Autor:
Fabio Checconi, John A. Gunnels, Jeffrey A. Stuecheli, Fabrizio Petrini, Xing Liu, Jee Choi, Daniele Buono, Xinyu Que
Publikováno v:
IPDPS
In this paper we evaluate the performance of a large-scale POWER8 symmetric multiprocessor (SMP) system with eight processors. We focus our attention on cache and memory subsystems, analyzing the characteristics that have a direct impact on high-perf
Publikováno v:
The International Journal of High Performance Computing Applications. 27:193-209
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution o
Publikováno v:
Mathematical Programming Computation. 2:103-124
We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficienc