Zobrazeno 1 - 10
of 181
pro vyhledávání: '"Johannes Sjöstrand"'
Autor:
Alain Grigis, Johannes Sjöstrand
This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in
Publikováno v:
Mathematical Research Letters
Mathematical Research Letters, 2021, 28 (3), pp.681-696. ⟨10.4310/MRL.2021.v28.n3.a3⟩
Mathematical Research Letters, 2021, 28 (3), pp.681-696. ⟨10.4310/MRL.2021.v28.n3.a3⟩
International audience; We study Toeplitz operators on the Bargmann space, with Toeplitz symbols that are exponentials of inhomogeneous quadratic polynomials. It is shown that the boundedness of such operators is implied by the boundedness of the cor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81a388c41ccd828d91af270d7f763fde
https://hal.archives-ouvertes.fr/hal-03302154
https://hal.archives-ouvertes.fr/hal-03302154
Autor:
Johannes Sjöstrand, Bernard Helffer
Publikováno v:
Integral Equations and Operator Theory
Integral Equations and Operator Theory, Springer Verlag, 2021, 93 (3), pp.36. ⟨10.1007/s00020-021-02652-6⟩
Integral Equations and Operator Theory, Springer Verlag, 2021, 93 (3), pp.36. ⟨10.1007/s00020-021-02652-6⟩
The purpose of this paper is to revisit the proof of the Gearhart–Pruss–Huang–Greiner theorem for a semigroup S(t), following the general idea of the proofs that we have seen in the literature and to get an explicit estimate on $$\Vert S(t) \Ve
Autor:
Johannes Sjöstrand, Martin Vogel
Publikováno v:
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2021, 22, pp.49-81. ⟨10.1007/s00023-020-00970-w⟩
Annales Henri Poincaré, Springer Verlag, 2021, 22, pp.49-81. ⟨10.1007/s00023-020-00970-w⟩
We study the spectra of general $N\times N$ Toeplitz matrices given by symbols in the Wiener Algebra perturbed by small complex Gaussian random matrices, in the regime $N\gg 1$. We prove an asymptotic formula for the number of eigenvalues of the pert
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7b2dbf8d6156f5942bd6b51c1371c1b
https://hal.archives-ouvertes.fr/hal-02975968
https://hal.archives-ouvertes.fr/hal-02975968
Publikováno v:
Duke Mathematical Journal
Duke Mathematical Journal, 2020, 169 (16), pp.3033-3097. ⟨10.1215/00127094-2020-0022⟩
Duke Mathematical Journal, Duke University Press, 2020, 169 (16), pp.3033-3097. ⟨10.1215/00127094-2020-0022⟩
Duke Math. J. 169, no. 16 (2020), 3033-3097
Duke Mathematical Journal, 2020, 169 (16), pp.3033-3097. ⟨10.1215/00127094-2020-0022⟩
Duke Mathematical Journal, Duke University Press, 2020, 169 (16), pp.3033-3097. ⟨10.1215/00127094-2020-0022⟩
Duke Math. J. 169, no. 16 (2020), 3033-3097
Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d11c406ec8c5b6179f9b469258f3fd41
https://hal.science/hal-03036172
https://hal.science/hal-03036172
We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann space of entire functions with quadratic exponential weights. Using some ideas of the time frequency analysis, we show that such operators are uniformly bounded on a na
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::755403db4c7e66571f1a7b719f04d904
http://arxiv.org/abs/2009.09128
http://arxiv.org/abs/2009.09128
Publikováno v:
Analysis as a tool in mathematical physics : in memory of Boris Pavlov
Analysis as a Tool in Mathematical Physics ISBN: 9783030315306
Analysis as a Tool in Mathematical Physics ISBN: 9783030315306
For a scalar elliptic self-adjoint operator on a compact manifold without boundary we have two-term asymptotics for the number of eigenvalues between 0 and λ when λ → ∞, under an additional dynamical condition. (See [3, Theorem 3.5] for an earl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55730a3e38d0be54f74945978c96aa95
https://biblio.ugent.be/publication/8752876/file/8764314
https://biblio.ugent.be/publication/8752876/file/8764314
Autor:
Maher Zerzeri, Johannes Sjöstrand
In this paper we study the distribution of scattering resonances for a multidimensional semi-classical Schr\"odinger operator, associated to a potential well in an island at energies close to the maximal one that limits the separation of the well and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c004ce6286f14c6769bbc4cc83e33dd4
We study semiclassical Gevrey pseudodifferential operators, acting on exponentially weighted spaces of entire holomorphic functions. The symbols of such operators are Gevrey functions defined on suitable I-Lagrangian submanifolds of the complexified
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46503797923e9db574836f49a58989e4
View the abstract.