Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Johannes P. van Dijken"'
Autor:
Lee R. Lynd, Johannes P. van Dijken, Evert K. Holwerda, David M. Stevenson, Jilai Zhou, Daniel Amador-Noguez, Shuen Hon
Publikováno v:
Applied and Environmental Microbiology
This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such
Publikováno v:
FEMS Yeast Research. 9:358-364
Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study inves
Publikováno v:
FEMS Yeast Research. 6:1193-1203
Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase gl
Autor:
H. Yde Steensma, Patricia de Jong-Gubbels, Marco A. van den Berg, Jack T. Pronk, Johannes P. van Dijken
Publikováno v:
FEMS Microbiology Letters. 153:75-81
In Saccharomyces cerevisiae, the structural genes ACS1 and ACS2 each encode an isoenzyme of acetyl-CoA synthetase (ACS; EC 6.2.1.1). Involvement of glucose catabolite repression in regulation of the two isoenzymes was investigated by following ACS ac
Autor:
Aaron Adriaan Winkler, Maurice J. Toirkens, Johannes P. van Dijken, Jack T. Pronk, Jasper A. Diderich, Marko Kuyper
Publikováno v:
FEMS Yeast Research. 5:925-934
We have recently reported about a Saccharomyces cerevisiae strain that, in addition to the Piromyces XylA xylose isomerase gene, overexpresses the native genes for the conversion of xylulose to glycolytic intermediates. This engineered strain (RWB 21
Autor:
Marko Kuyper, Aaron Adriaan Winkler, Johannes P. van Dijken, Miranda M.P. Hartog, Marinka J. H. Almering, Maurice J. Toirkens, Jack T. Pronk
Publikováno v:
FEMS Yeast Research. 5:399-409
After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a μmax of 0.03 h−1. In order to investigate whether reactions do
Publikováno v:
Applied Biochemistry and Biotechnology. 121:0375-0378
Publikováno v:
FEMS Yeast Research. 4:655-664
When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity
Autor:
Aaron Adriaan Winkler, Johannes P. van Dijken, Mike S. M. Jetten, Harry R. Harhangi, Wim T. A. M. de Laat, Marko Kuyper, Jack T. Pronk, Ann Kristin Stave, Huub J. M. Op den Camp, Jan J J den Ridder
Publikováno v:
FEMS Yeast Research. 4:69-78
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene e
Autor:
Anna Akhmanova, Mike S. M. Jetten, Jack T. Pronk, Chris van der Drift, Harry R. Harhangi, Johannes P. van Dijken, Huub J. M. Op den Camp, Wim T. A. M. de Laat, Roul Emmens
Publikováno v:
Archives of Microbiology. 180:134-141
The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and d-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from