Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Johannes Kellendonk"'
Autor:
Johannes Kellendonk
Publikováno v:
Journal of Mathematical Physics. 64:031902
The diffraction spectrum of an aperiodic solid is related to the group of eigenvalues of the dynamical system associated with the solid. Those eigenvalues with continuous eigenfunctions constitute the topological Bragg spectrum. We relate the topolog
Autor:
Johannes Kellendonk
Publikováno v:
Communications in Mathematical Physics. 368:467-518
We consider cycles for graded $$C^{*,\mathfrak {r}}$$ -algebras (Real $$C^{*}$$ -algebras) which are compatible with the $$*$$ -structure and the real structure. Their characters are cyclic cocycles. We define a Connes type pairing between such chara
Autor:
Marcy Barge, Johannes Kellendonk
Publikováno v:
Ergodic Theory and Dynamical Systems
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2020, pp.1-17. ⟨10.1017/etds.2020.118⟩
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2020, pp.1-17. ⟨10.1017/etds.2020.118⟩
It is shown that the Ellis semigroup of a $\mathbb Z$ -action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::032fcc60fcabdc8f028edeae5c431b00
https://hal.archives-ouvertes.fr/hal-03003771
https://hal.archives-ouvertes.fr/hal-03003771
Publikováno v:
Oberwolfach Reports. 14:2781-2845
The mathematical theory of aperiodic order grew out of various predecessors in discrete geometry, harmonic analysis and mathematical physics, and developed rapidly after the discovery of real world quasicrystals in 1982 by Shechtman. Many mathematica
Autor:
Johannes Kellendonk
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030576653
We review the construction of operators and algebras from tilings of Euclidean space. This is mainly motivated by physical questions, in particular after topological properties of materials. We explain how the physical notion of locality of interacti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed8227194f96b13dc4a1938bff23d72e
https://hal.archives-ouvertes.fr/hal-02108533
https://hal.archives-ouvertes.fr/hal-02108533
Autor:
Lorenzo Sadun, Johannes Kellendonk
Publikováno v:
Discrete and Continuous Dynamical Systems-Series A
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2017, 37 (7), pp.3805-3830. ⟨10.3934/dcds.2017161⟩
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2017, 37 (7), pp.3805-3830. ⟨10.3934/dcds.2017161⟩
Let $M$ be a model set meeting two simple conditions: (1) the internal space $H$ is a product of $R^n$ and a finite group, and (2) the window $W$ is a finite union of disjoint polyhedra. Then any point pattern with finite local complexity (FLC) that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39d50ef4f91f7c7336c590136c7ba48b
https://hal.archives-ouvertes.fr/hal-01006289/file/Mixed16.pdf
https://hal.archives-ouvertes.fr/hal-01006289/file/Mixed16.pdf
Autor:
Johannes Kellendonk
Publikováno v:
Annales Henri Poincare
Annales Henri Poincare, 2017, 18 (7), pp.2251-2300. 〈10.1007/s00023-017-0583-0〉
Annales Henri Poincare, 2017, 18 (7), pp.2251-2300. ⟨10.1007/s00023-017-0583-0⟩
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2017, 18 (7), pp.2251-2300. ⟨10.1007/s00023-017-0583-0⟩
Annales Henri Poincare, 2017, 18 (7), pp.2251-2300. 〈10.1007/s00023-017-0583-0〉
Annales Henri Poincare, 2017, 18 (7), pp.2251-2300. ⟨10.1007/s00023-017-0583-0⟩
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2017, 18 (7), pp.2251-2300. ⟨10.1007/s00023-017-0583-0⟩
The notion of a topological phase of an insulator is based on the concept of homotopy between Hamiltonians. It therefore depends on the choice of a topological space to which the Hamiltonians belong. We advocate that this space should be the $C^*$-al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab8d58136133517bfafd3069c35ff4ac
https://hal.archives-ouvertes.fr/hal-01554318
https://hal.archives-ouvertes.fr/hal-01554318
Autor:
Emil Prodan, Johannes Kellendonk
Publikováno v:
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2019, ⟨10.1007/s00023-019-00792-5⟩
Annales Henri Poincaré, Springer Verlag, 2019, ⟨10.1007/s00023-019-00792-5⟩
We consider one dimensional tight binding models on $\ell^2(\mathbb Z)$ whose spatial structure is encoded by a Sturmian sequence $(\xi_n)_n\in \{a,b\}^\mathbb Z$. An example is the Kohmoto Hamiltonian, which is given by the discrete Laplacian plus a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::390843d54dc741f5a9eb37e4c66dadfe
Publikováno v:
Discrete Mathematics
Discrete Mathematics, Elsevier, 2013, 313, pp.2881-2894. ⟨10.1016/j.disc.2013.08.026⟩
Discrete Mathematics, Elsevier, 2013, 313, pp.2881-2894. ⟨10.1016/j.disc.2013.08.026⟩
We consider minimal, aperiodic symbolic subshifts and show how to characterize the combinatorial property of bounded powers by means of a metric property. For this purpose we construct a family of graphs which all approximate the subshift space, and
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by t