Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Job J. Kuit"'
Publikováno v:
Krötz, B, Kuit, J J, Opdam, E M & Schlichtkrull, H 2020, ' The Infinitesimal Characters of Discrete Series for Real Spherical Spaces ', Geometric and Functional Analysis, vol. 30, no. 3, pp. 804-857 . https://doi.org/10.1007/s00039-020-00540-6
Geometric and Functional Analysis, 30(3), 804-857. Birkhauser Verlag Basel
Geometric and Functional Analysis, 30(3), 804-857. Birkhauser Verlag Basel
Let $Z=G/H$ be the homogeneous space of a real reductive group and a unimodular real spherical subgroup, and consider the regular representation of $G$ on $L^2(Z)$. It is shown that all representations of the discrete series, that is, the irreducible
Publikováno v:
Journal fur die Reine und Angewandte Mathematik, 2022(782), 109-119. De Gruyter
Krötz, B, Kuit, J J, Opdam, E M & Schlichtkrull, H 2022, ' Ellipticity and discrete series ', Journal fur die Reine und Angewandte Mathematik, vol. 2022, no. 782, pp. 109-119 . https://doi.org/10.1515/crelle-2021-0063
Krötz, B, Kuit, J J, Opdam, E M & Schlichtkrull, H 2022, ' Ellipticity and discrete series ', Journal fur die Reine und Angewandte Mathematik, vol. 2022, no. 782, pp. 109-119 . https://doi.org/10.1515/crelle-2021-0063
We explain by elementary means why the existence of a discrete series representation of a real reductive group G implies the existence of a compact Cartan subgroup of G. The presented approach has the potential to generalize to real spherical spaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89b57e7942224dd2dce95470d644a568
https://dare.uva.nl/personal/pure/en/publications/ellipticity-and-discrete-series(117ae31a-16b9-45b5-a829-daee9d06fc8c).html
https://dare.uva.nl/personal/pure/en/publications/ellipticity-and-discrete-series(117ae31a-16b9-45b5-a829-daee9d06fc8c).html
Publikováno v:
Krötz, B, Kuit, J J & Schlichtkrull, H 2022, ' Discrete series representations with non-tempered embedding ', Indagationes Mathematicae, vol. 33, no. 4, pp. 869-879 . https://doi.org/10.1016/j.indag.2022.02.010
We give an example of a semisimple symmetric space G/H and an irreducible representation of G which has multiplicity 1 in L2(G/H) and multiplicity 2 in C∞(G/H).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3f08994863de5a7c95166e7bd4feb6b
http://arxiv.org/abs/2103.08296
http://arxiv.org/abs/2103.08296
Autor:
Job J. Kuit, Eitan Sayag
In the present paper we further the study of the compression cone of a real spherical homogeneous space $Z=G/H$. In particular we provide a geometric construction of the little Weyl group of $Z$ introduced recently by Knop and Kr\"otz. Our technique
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89933e161a486a02a96e11c05f169a2c
http://arxiv.org/abs/2006.03516
http://arxiv.org/abs/2006.03516
Autor:
Job J. Kuit, Mogens Flensted-Jensen
Publikováno v:
Indagationes Mathematicae. 29:1235-1258
We show that for the symmetric spaces SL ( 3 , R ) ∕ SO ( 1 , 2 ) e and SL ( 3 , C ) ∕ SU ( 1 , 2 ) the cuspidal integrals are absolutely convergent. We further determine the behavior of the corresponding Radon transforms and relate the kernels o
Publikováno v:
Kyoto Journal of Mathematics, 59(2), 471. Duke University Press
Kyoto J. Math. 59, no. 2 (2019), 471-513
van den Ban, E P, Kuit, J J & Schlichtkrull, H 2019, ' The notion of cusp forms for a class of reductive symmetric spaces of split rank 1 ', Kyoto Journal of Mathematics, vol. 59, no. 2, pp. 471-513 . https://doi.org/10.1215/21562261-2019-0015
Kyoto J. Math. 59, no. 2 (2019), 471-513
van den Ban, E P, Kuit, J J & Schlichtkrull, H 2019, ' The notion of cusp forms for a class of reductive symmetric spaces of split rank 1 ', Kyoto Journal of Mathematics, vol. 59, no. 2, pp. 471-513 . https://doi.org/10.1215/21562261-2019-0015
We study a notion of cusp forms for the symmetric spaces $G/H$ with $G=\mathrm{SL}(n,{\mathbb{R}})$ and $H=\mathrm{S}(\mathrm{GL}(n-1,{\mathbb{R}})\times \mathrm{GL}(1,{\mathbb{R}}))$ . We classify all minimal parabolic subgroups of $G$ for which the
Autor:
Job J. Kuit
Publikováno v:
Advances in Mathematics. 240:427-483
We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G / H for a reductive Lie group G of