Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Joan Porti"'
Autor:
Michael Heusener, Joan Porti
Publikováno v:
Transactions of the American Mathematical Society.
The aim of this article is to study the SL 2 ( C ) \operatorname {SL}_2(\mathbb {C}) –character scheme of a finitely generated group. Given a presentation of a finitely generated group Γ \Gamma , we give equations defining the coordinate ring
Autor:
Joan Porti
Publikováno v:
In the Tradition of Thurston II ISBN: 9783030975593
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7e678d4cd26af831ad38e8466bb2737
https://doi.org/10.1007/978-3-030-97560-9_4
https://doi.org/10.1007/978-3-030-97560-9_4
Autor:
Luisa Paoluzzi, Joan Porti
Publikováno v:
Characters in Low-Dimensional Topology. :229-261
Autor:
Joan Porti
Publikováno v:
Winter Braids Lecture Notes. 4:1-21
Autor:
Stephan Tillmann, Joan Porti
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
We compute and analyse the moduli space of those real projective structures on a hyperbolic 3-orbifold that are modelled on a single ideal tetrahedron in projective space. Parameterisations are given in terms of classical invariants, traces, and geom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::67c66dca3e6de32bef9f91dbef92d0b2
http://arxiv.org/abs/2004.06242
http://arxiv.org/abs/2004.06242
Autor:
Wolfgang Pitsch, Joan Porti
Publikováno v:
Geometry & Topology. 22:4067-4112
Let M be a compact oriented three-manifold whose interior is hyperbolic of finite volume. We prove a variation formula for the volume on the variety of representations of π 1 ( M ) in SL n ( ℂ ) . Our proof follows the strategy of Reznikov’s rig
Autor:
Joan Porti
Publikováno v:
Scopus-Elsevier
We prove that, among the polygons in a punctured disc with fixed angles, the perimeter is minimized by the polygon with an inscribed horocycle centered at the puncture. We generalize this to a disc with a cone point and to an annulus with a geodesic
Publikováno v:
Kapovich, Michael; Leeb, Bernhard; & Porti, Joan. (2013). Dynamics on flag manifolds: domains of proper discontinuity and cocompactness. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/5p7628cz
Geometry & Topology
Kapovich, M; Leeb, B; & Porti, J. (2018). Dynamics on flag manifolds: Domains of proper discontinuity and cocompactness. Geometry and Topology, 22(1), 157-234. doi: 10.2140/gt.2018.22.157. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/79b5x84m
Geom. Topol. 22, no. 1 (2018), 157-234
Geometry & Topology
Kapovich, M; Leeb, B; & Porti, J. (2018). Dynamics on flag manifolds: Domains of proper discontinuity and cocompactness. Geometry and Topology, 22(1), 157-234. doi: 10.2140/gt.2018.22.157. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/79b5x84m
Geom. Topol. 22, no. 1 (2018), 157-234
For noncompact semisimple Lie groups $G$ we study the dynamics of the actions of their discrete subgroups $\Gamma
Comment: 65 pages
Comment: 65 pages
Autor:
Joan Porti, Luisa Paoluzzi
Publikováno v:
Mathematical Proceedings
Mathematical Proceedings, Cambridge University Press (CUP), 2018, 165 (2), pp.193-208. ⟨10.1017/S0305004117000391⟩
Mathematical Proceedings of the Cambridge Philosophical Society
Mathematical Proceedings of the Cambridge Philosophical Society, 2018, 165 (2), pp.193-208. ⟨10.1017/S0305004117000391⟩
Mathematical Proceedings, Cambridge University Press (CUP), 2018, 165 (2), pp.193-208. ⟨10.1017/S0305004117000391⟩
Mathematical Proceedings of the Cambridge Philosophical Society
Mathematical Proceedings of the Cambridge Philosophical Society, 2018, 165 (2), pp.193-208. ⟨10.1017/S0305004117000391⟩
We study character varieties of symmetric knots and their reductions modp. We observe that the varieties present a different behaviour according to whether the knots admit a free or periodic symmetry.
Autor:
Michael Heusener, Joan Porti
Publikováno v:
Annales Henri Lebesgue
Annales Henri Lebesgue, 2020, 3, pp.341-380. ⟨10.5802/ahl.35⟩
ahl.centre-mersenne.org/item/AHL_2020__3__341_0/
Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2020, 3, pp.341-380. ⟨10.5802/ahl.35⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Annales Henri Lebesgue, 2020, 3, pp.341-380. ⟨10.5802/ahl.35⟩
ahl.centre-mersenne.org/item/AHL_2020__3__341_0/
Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2020, 3, pp.341-380. ⟨10.5802/ahl.35⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
For closed and oriented hyperbolic surfaces, a formula of Witten establishes an equality between two volume forms on the space of representations of the surface in a semisimple Lie group. One of the forms is a Reidemeister torsion, the other one is t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::489ddcf5af7f3a09c299af4fb5428470
https://hal.science/hal-01770366
https://hal.science/hal-01770366