Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Joan Olmos Bonafe"'
Machine Learning Adaptive Computational Capacity Prediction for Dynamic Resource Management in C-RAN
Publikováno v:
IEEE Access, Vol 8, Pp 89130-89142 (2020)
Efficient computational resource management in 5G Cloud Radio Access Network (C-RAN) environments is a challenging problem because it has to account simultaneously for throughput, latency, power efficiency, and optimization tradeoffs. The assumption
Externí odkaz:
https://doaj.org/article/34b72febe8f0480ab5cef29c0b85d30d
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
EuCNC
Universitat Politècnica de Catalunya (UPC)
EuCNC
The assumption of a fixed computational capacityat the Baseband Unit (BBU) pools in a Cloud Radio Access Network (C-RAN) deployment results in underutilized resourcesor unsatisfied users depending on traffic requirements. In thispaper a new strategy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22b1b71c45dfe2ef843e075f19a7e38d
https://hdl.handle.net/2117/345553
https://hdl.handle.net/2117/345553
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
WiMob
Universitat Politècnica de Catalunya (UPC)
WiMob
This work proposes the use of a modified and improved version of the realistic Vienna Scenario that was defined in COST action IC1004, to test two different scale C-RAN deployments. First, a large-scale analysis with 628 Macro-cells (Mcells) and 221
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1778bbc83f886f633a46bc6a46fee7c
https://hdl.handle.net/2117/184372
https://hdl.handle.net/2117/184372