Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Joackim Bernier"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
We consider the nonlinear wave equation (NLW) on the $d$-dimensional torus $\mathbb{T}^{d}$ with a smooth nonlinearity of order at least 2 at the origin. We prove that, for almost any mass, small and smooth solutions of high Sobolev indices are stabl
Externí odkaz:
https://doaj.org/article/14526f2f80504c9fbd84b3626f9144e5
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire.
Autor:
Joackim Bernier
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 39:3179-3195
We consider the discrete nonlinear Schrodinger equations on a one dimensional lattice of mesh h, with a cubic focusing or defocusing nonlinearity. We prove a polynomial bound on the growth of the discrete Sobolev norms, uniformly with respect to the
Autor:
Joackim Bernier
Publikováno v:
Foundations of Computational Mathematics
Foundations of Computational Mathematics, 2021
Foundations of Computational Mathematics, 2021
International audience; We introduce some general tools to design exact splitting methods to compute numerically semigroups generated by inhomogeneous quadratic differential operators. More precisely, we factorize these semigroups as products of semi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22644153ad66d70b3c864891c3303242
https://hal.science/hal-02425591
https://hal.science/hal-02425591
Publikováno v:
Journal of Scientific Computing
Journal of Scientific Computing, 2021, 86 (1), ⟨10.1007/s10915-020-01369-9⟩
Journal of Scientific Computing, Springer Verlag, 2021, 86 (1), ⟨10.1007/s10915-020-01369-9⟩
Journal of Scientific Computing, 2021, 86 (1), ⟨10.1007/s10915-020-01369-9⟩
Journal of Scientific Computing, Springer Verlag, 2021, 86 (1), ⟨10.1007/s10915-020-01369-9⟩
In (Bernier in Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators. arXiv:1912.13219 , (2019)), some exact splittings are proposed for inhomogeneous quadratic differential equations including, for exampl
We consider the semi-linear beam equation on the d dimensional irrational torus with smooth nonlinearity of order n -- 1 with n $\ge$ 3 and d $\ge$ 2. If $\epsilon$ $\ll$ 1 is the size of the initial datum, we prove that the lifespan T$\epsilon$ of s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9ff003b712259277f72f2cd738faef0
https://hal.archives-ouvertes.fr/hal-02987274/document
https://hal.archives-ouvertes.fr/hal-02987274/document
Autor:
Benoît Grébert, Joackim Bernier
Publikováno v:
Archive for Rational Mechanics and Analysis
Archive for Rational Mechanics and Analysis, 2021
Archive for Rational Mechanics and Analysis, 2021
We provide an accurate description of the long time dynamics of the solutions of the generalized Korteweg–De Vries (gKdV) and Benjamin–Ono (gBO) equations on the one dimension torus, without external parameters, and that are issued from almost an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::822b39474e54ed4496625c89aa3bfe8a
http://arxiv.org/abs/2006.04397
http://arxiv.org/abs/2006.04397
Publikováno v:
SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2020, 42 (2), pp.A666-A697. ⟨10.1137/19M1273918⟩
SIAM Journal on Scientific Computing, 2020, 42 (2), pp.A666-A697. ⟨10.1137/19M1273918⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2020, 42 (2), pp.A666-A697. ⟨10.1137/19M1273918⟩
SIAM Journal on Scientific Computing, 2020, 42 (2), pp.A666-A697. ⟨10.1137/19M1273918⟩
International audience; In this work, a splitting strategy is introduced to approximate two-dimensional rotation motions. Unlike standard approaches based on directional splitting which usually lead to a wrong angular velocity and then to large error
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56d616b0b3d25453cc24030019c9731e
https://hal.inria.fr/hal-02178952/file/hal_BCC.pdf
https://hal.inria.fr/hal-02178952/file/hal_BCC.pdf
Publikováno v:
Forum of Mathematics, Sigma
Forum of Mathematics, Sigma, Cambridge University press, 2020, 8, pp.E12. ⟨10.1017/fms.2020.8⟩
Forum of Mathematics, Sigma, 2020, 8, pp.E12. ⟨10.1017/fms.2020.8⟩
Forum of Mathematics, Sigma, Cambridge University press, 2020, 8, pp.E12. ⟨10.1017/fms.2020.8⟩
Forum of Mathematics, Sigma, 2020, 8, pp.E12. ⟨10.1017/fms.2020.8⟩
We consider the nonlinear wave equation (NLW) on the $d$ -dimensional torus $\mathbb{T}^{d}$ with a smooth nonlinearity of order at least 2 at the origin. We prove that, for almost any mass, small and smooth solutions of high Sobolev indices are stab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27a06adb2c0f49936de1a6823a11e1bf
https://hal.archives-ouvertes.fr/hal-02151338v2/document
https://hal.archives-ouvertes.fr/hal-02151338v2/document
Autor:
Michel Mehrenberger, Joackim Bernier
Publikováno v:
Kinetic and Related Models
Kinetic and Related Models, 2020, 13 (1), pp.129-168. ⟨10.3934/krm.2020005⟩
Kinetic & Related Models
Kinetic and Related Models, AIMS, 2020, 13 (1), pp.129-168. ⟨10.3934/krm.2020005⟩
Kinetic and Related Models, 2020, 13 (1), pp.129-168. ⟨10.3934/krm.2020005⟩
Kinetic & Related Models
Kinetic and Related Models, AIMS, 2020, 13 (1), pp.129-168. ⟨10.3934/krm.2020005⟩
International audience; The asymptotic behavior of the solutions of the second order linearized Vlasov-Poisson system around homogeneous equilibria is derived. It provides a fine description of some nonlinear and multidimensional phenomena such as th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0043a32d2eb3940c8454f05d9bad4192
https://hal.science/hal-02070138
https://hal.science/hal-02070138