Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Joachim Michel"'
Autor:
Hans Volkmer, Joachim Michel
Publikováno v:
Complex Variables and Elliptic Equations. 58:333-350
The model eigenvalue problem , w(−1) = w(1) = 0, contains two complex parameters E and z. Considering E as a function of z one obtains a spectral Riemann surface. Level crossings between sheets of the spectral surface are given explicitly, and the
Autor:
Joachim Michel
Publikováno v:
Kyushu Journal of Mathematics. 59:375-384
Regularity of solutions of the tangential Cauchy-Riemann (CR) equation is shown on domains in Levi-flat CR manifolds for the class of C∞ forms up to the boundary. These domains are transversal intersections of the CR submanifold with pseudoconvex d
Autor:
Mei-Chi Shaw, Joachim Michel
Publikováno v:
Transactions of the American Mathematical Society. 351:4365-4380
Autor:
Joachim Michel, Mei-Chi Shaw
Publikováno v:
Mathematische Zeitschrift. 230:1-19
Let Ω ⊂ Cn be a bounded pseudoconvex domain with defining function ρ of class CK , 2 ≤ K ≤ ∞. Let ν ≥ 1 be a real number such that ρ = −(−ρ)1/ν is a strictly plurisubharmonic exhaustion function on Ω. For a bounded open set Ω0
Autor:
Ingo Lieb, Joachim Michel
This book presents complex analysis of several variables from the point of view of the Cauchy-Riemann equations and integral representations. A more detailed description of our methods and main results can be found in the introduction. Here we only m
Autor:
Joachim Michel, Mei-Chi Shaw
Publikováno v:
Mathematische Annalen. 311:147-162
Autor:
Joachim Michel
Publikováno v:
Banach Center Publications. 31:263-273
In a series of papers Webster ([26], [27], [28]) has shown how C-estimates for the tangential Cauchy-Riemann complex can be applied to several non-linear problems in Complex Analysis. For example, he gave a simplification of the proof of Kuranishi’
Autor:
Joachim Michel
Publikováno v:
Mathematische Zeitschrift. 213:65-73
Optimal cgk+'-estimates on the Hartogs triangle H 0 for ~-are given in [5]. Here we are concerned with cg~-estimates on/-/. One result will be, that cgX-estimates in the ordinary sense cannot exist. Denote by cgk(/~) the space of functions, where the
Autor:
Lan Ma, Joachim Michel
Publikováno v:
Mathematische Annalen. 294:661-675
Autor:
Joachim Michel, Christian Langer
Publikováno v:
Bibliotheksdienst. 43