Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Jo Schlemper"'
Publikováno v:
J Med Imaging (Bellingham)
PURPOSE: Portable magnetic resonance imaging (pMRI) has potential to rapidly acquire images at the patients’ bedside to improve access in locations lacking MRI devices. The scanner under consideration has a magnetic field strength of 0.064 T, thus
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82424f1b84d1b39380dcb8dcc55a7f81
https://europepmc.org/articles/PMC10201274/
https://europepmc.org/articles/PMC10201274/
Autor:
Bo Zhou, Jo Schlemper, Neel Dey, Seyed Sadegh Mohseni Salehi, Kevin Sheth, Chi Liu, James S. Duncan, Michal Sofka
While enabling accelerated acquisition and improved reconstruction accuracy, current deep MRI reconstruction networks are typically supervised, require fully sampled data, and are limited to Cartesian sampling patterns. These factors limit their prac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83cda975a5aa57fc6ea2f99d9dd44dc1
Autor:
Daniel Rueckert, Kerstin Hammernik, Anthony N. Price, René M. Botnar, Jo Schlemper, Chen Qin, Thomas Küstner, Joseph V. Hajnal, Jinming Duan, Claudia Prieto
Publikováno v:
Magnetic Resonance in Medicine. 86:3274-3291
Purpose To introduce a novel deep learning-based approach for fast and high-quality dynamic multicoil MR reconstruction by learning a complementary time-frequency domain network that exploits spatiotemporal correlations simultaneously from complement
Publikováno v:
Magnetic Resonance in Medicine. 86:1859-1872
PURPOSE To systematically investigate the influence of various data consistency layers and regularization networks with respect to variations in the training and test data domain, for sensitivity-encoded accelerated parallel MR image reconstruction.
Autor:
Bo Zhou, Neel Dey, Jo Schlemper, Seyed Sadegh Mohseni Salehi, Chi Liu, James S. Duncan, Michal Sofka
Multi-contrast MRI (MC-MRI) captures multiple complementary imaging modalities to aid in radiological decision-making. Given the need for lowering the time cost of multiple acquisitions, current deep accelerated MRI reconstruction networks focus on e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e41eed22ccd64df3cee8877b2ca36d71
http://arxiv.org/abs/2201.10776
http://arxiv.org/abs/2201.10776
Autor:
Prantik Kundu, Seyed Sadegh Mohseni Salehi, Bradley A. Cahn, Mercy H. Mazurek, Matthew M. Yuen, E. Brian Welch, Barbara S. Gordon-Kundu, Jo Schlemper, Gordon Sze, W. Taylor Kimberly, Jonathan M. Rothberg, Michal Sofka, Kevin N. Sheth
Background and PurposeIn stroke, timely treatment is vital for preserving neurologic function. However, decision-making in neurocritical care is hindered by limited accessibility of neuroimaging and radiological interpretation. We evaluated an artifi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9bc7884985b6b20d4e22fba1e58fe7b4
https://doi.org/10.1101/2022.01.22.22269697
https://doi.org/10.1101/2022.01.22.22269697
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164453
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4545530a47368bc7618160175b58d49c
https://doi.org/10.1007/978-3-031-16446-0_7
https://doi.org/10.1007/978-3-031-16446-0_7
Publikováno v:
Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges ISBN: 9783030390730
STACOM@MICCAI
STACOM@MICCAI
Deep learning based registration methods have emerged as alternatives to traditional registration methods, with competitive accuracy and significantly less runtime. Two different strategies have been proposed to train such deep learning registration
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::20ae9918eac014b0731886341f0fc32c
https://doi.org/10.1007/978-3-030-39074-7_20
https://doi.org/10.1007/978-3-030-39074-7_20
Autor:
Daniel Rueckert, Giacomo Tarroni, Chen Chen, Huaqi Qiu, Cheng Ouyang, Wenjia Bai, Jo Schlemper
Publikováno v:
MICCAI STACOM Workshop
Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges ISBN: 9783030390730
STACOM@MICCAI
Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges ISBN: 9783030390730
STACOM@MICCAI
In this work, we present a fully automatic method to segment cardiac structures from late-gadolinium enhanced (LGE) images without using labelled LGE data for training, but instead by transferring the anatomical knowledge and features learned on anno
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e406663f910166594805ecd8a08e243
http://arxiv.org/abs/1908.07344
http://arxiv.org/abs/1908.07344
Autor:
Veronika A. Zimmer, Matthew Sinclair, Daniel Rueckert, Alberto Gomez, James Housden, Jo Schlemper, Ozan Oktay, Jacqueline Matthew, Bernhard Kainz, Benjamin Hou, Julia A. Schnabel, Nicolas Toussaint, Martin Rajchl, Qingjie Meng
Publikováno v:
Meng, Q, Sinclair, M, Zimmer, V, Hou, B, Rajchl, M, Toussaint, N, Oktay, O, Schlemper, J, Gomez, A, Housden, J, Matthew, J, Rueckert, D, Schnabel, J A & Kainz, B 2019, ' Weakly Supervised Estimation of Shadow Confidence Maps in Fetal Ultrasound Imaging ', IEEE transactions on medical imaging, vol. 38, no. 12, 8698843, pp. 2755-2767 . https://doi.org/10.1109/TMI.2019.2913311
Detecting acoustic shadows in ultrasound images is important in many clinical and engineering applications. Real-time feedback of acoustic shadows can guide sonographers to a standardized diagnostic viewing plane with minimal artifacts and can provid