Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Joël Rouyer"'
Autor:
Joël Rouyer, Costin Vîlcu
Publikováno v:
Advances in Geometry. 20:139-148
We study global maxima of distance functions on most Alexandrov surfaces with curvature bounded below, where "most" is used in the sense of Baire categories.
Comment: 15 pages, 2 figures. Minor changes, improving the presentation in v2
Comment: 15 pages, 2 figures. Minor changes, improving the presentation in v2
Publikováno v:
Differential Geometry and its Applications. 66:242-252
We determine (non-necessarily convex) polyhedra having simple dense geodesics.
12 pages, 6 figures
12 pages, 6 figures
Publikováno v:
Advances in Mathematics. 343:245-272
We consider a typical (in the sense of Baire categories) convex body K in R d + 1 . The set of feet of its double normals is a Cantor set, having lower box-counting dimension 0 and packing dimension d. The set of lengths of those double normals is al
We prove inequalities involving intrinsic and extrinsic radii and diameters of tetrahedra.
Comment: 14 pages, 2 figures
Comment: 14 pages, 2 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::375173d93932b214f6913b4ee10e5aed
Autor:
Joël Rouyer, Costin Vîlcu
We consider the distance function from an arbitrary point $p$ on a flat surface, and determine the set $F_{p}$ of all \emph{farthest points} (i.e., points at maximal distance) from $p$.
Comment: 10 pages, 3 figures
Comment: 10 pages, 3 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0778b99782dd53122a173a9dee01cab3
http://arxiv.org/abs/1807.03507
http://arxiv.org/abs/1807.03507
Autor:
Joël Rouyer
Publikováno v:
Journal of Geometry. 104:165-200
We provide a matrix invariant for isometry classes of p-tuples of points in the Grassmann manifold \({G_{n}\left(\mathbb{K}^{d}\right) }\) (\({\mathbb{K=\mathbb{R}}}\) or \({\mathbb{C}}\)). This invariant fully characterizes the p-tuple. We use it to
Autor:
Joël Rouyer
Publikováno v:
Convexity and Discrete Geometry Including Graph Theory ISBN: 9783319281841
On a convex surface S, the antipodal map F associates to any point p in S the set of farthest points from p, with respect to the intrinsic metric. S is called a Steinhaus surface if F is a single-valued involution. We prove that any convex polyhedron
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::199aa6230c05f391c309454d848c8b33
https://doi.org/10.1007/978-3-319-28186-5_7
https://doi.org/10.1007/978-3-319-28186-5_7
Autor:
Costin Vîlcu, Joël Rouyer
Publikováno v:
Analele Universitatii "Ovidius" Constanta - Seria Matematica. 20:197-212
We study tetrahedra and the space of tetrahedra from the viewpoint of local and global maxima for intrinsic distance functions.
Comment: 15 pages, 2 figures
Comment: 15 pages, 2 figures
Autor:
Joël Rouyer
Publikováno v:
Topology and its Applications. 158:2140-2147
We prove that there is a residual subset of the Gromov–Hausdorff space ( i.e. the space of all compact metric spaces up to isometry endowed with the Gromov–Hausdorff distance) whose elements enjoy several unexpected properties. In particular, the
Autor:
Joël Rouyer
Publikováno v:
International Journal of Mathematics. 21:1605-1617
It is proved in this article, that in the framework of Riemannian geometry, the existence of large sets of antipodes (i.e. farthest points) for diametral points of a smooth surface has very strong consequences on the topology and the metric of this s