Zobrazeno 1 - 10
of 22
pro vyhledávání: '"João R. Santos Júnior"'
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. :1-27
In this work, we study a quasilinear elliptic problem involving the 1-Laplacian operator, with a discontinuous, superlinear and subcritical nonlinearity involving the Heaviside function $H(\cdot - \beta )$ . Our approach is based on an analysis of th
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We consider a boundary value problem in a bounded domain involving a degenerate operator of the form $$L(u)=-\textrm{div} (a(x)\nabla u)$$ and a suitable nonlinearity $f$. The function $a$ vanishes on smooth 1-codimensional submanifolds of $\Omega$ w
Publikováno v:
Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 357-368 (2021)
We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 64:675-688
By assuming that the Kirchhoff term has $K$ degeneracy points and other appropriated conditions, we have proved the existence of at least $K$ positive solutions other than those obtained in Santos Júnior and Siciliano [Positive solutions for a Kirch
Autor:
Leszek Gasiński, João R. Santos Júnior
Publikováno v:
Computers & Mathematics with Applications. 78:136-143
We consider an elliptic boundary value problem with degenerate nonlocal term. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of zeros of the degenerate term. The solutions are also or
Publikováno v:
Communications in Contemporary Mathematics. 24
This paper deals with a nonlocal diffusion elliptic eigenvalue problem. Specifically, the diffusion of the unknown variable at a point of the domain depends on its value in a neighborhood of the point. We apply bifurcation arguments and appropriate a
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we address the following Kirchhoff type problem \begin{equation*} \left\{ \begin{array}{ll} -\Delta(g(|\nabla u|_2^2) u + u^r) = a u + b u^p& \mbox{in}~\Omega, u>0& \mbox{in}~\Omega, u= 0& \mbox{on}~\partial\Omega, \end{array} \right. \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e51af20158a06318daa19197634b442e
Publikováno v:
Topol. Methods Nonlinear Anal. 56, no. 1 (2020), 173-195
A class of generalized Schrodinger problems in a bounded domain is studied. A complete overview of the set of solutions is provided, depending on the values assumed by parameters involved in the problem. In order to obtain the results, we combine mon
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10aac56d15c67d90d168296a12328bd1
https://projecteuclid.org/euclid.tmna/1602813625
https://projecteuclid.org/euclid.tmna/1602813625
Publikováno v:
Israel Journal of Mathematics. 227:485-505
In this paper we study the existence, uniqueness and multiplicity of positive solutions to a non-linear Schr¨odinger equation. We describe the set of positive solutions. We use mainly the sub-supersolution method, bifurcation and variational argumen
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 70
A class of generalised Schrodinger elliptic problems involving concave–convex and other types of nonlinearities is studied. A reasonable overview about the set of solutions is provided when the parameters involved in the equation assume different r