Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Jo, Yeongseong"'
Autor:
Jo, Yeongseong
In this article, we would like to formulate a relation between the square norm of Whittaker--Fourier coefficients on even special orthogonal and symplectic groups and Petersson inner products along with the critical value of $L$-functions up to const
Externí odkaz:
http://arxiv.org/abs/2407.13599
Autor:
Jo, Yeongseong
We study four sums including the Jacquet--Piatetski-Shapiro--Shalika, Flicker, Bump--Friedberg, and Jacquet--Shalika sums associated to irreducible cuspidal representations of general linear groups over finite fields. By computing explicitly, we rela
Externí odkaz:
http://arxiv.org/abs/2307.02085
Autor:
Jo, Yeongseong
A purely local approach has been developed by Krishnamurthy and Kutzko to compute Langlands-Shahidi local coefficient for ${\rm SL}(2)$ via types and covers \`{a} la Bushnell-Kutzko. In this paper, we extend their method to the non-split case and com
Externí odkaz:
http://arxiv.org/abs/2209.12378
Autor:
Jo, Yeongseong
Let $F$ be a non-archimedean local field of characteristic different from $2$ and $G$ be either an odd special orthogonal group ${\rm SO}_{2r+1}(F)$ or a symplectic group ${\rm Sp}_{2r}(F)$. In this paper, we establish the local converse theorem for
Externí odkaz:
http://arxiv.org/abs/2205.09004
Autor:
Humphries, Peter, Jo, Yeongseong
Publikováno v:
Publicacions Matem\`atiques 68:1 (2024), 139-185
We study period integrals involving Whittaker functions associated to generic irreducible Casselman-Wallach representations of $\mathrm{GL}_n(F)$, where $F$ is an archimedean local field. Via the archimedean theory of newforms for $\mathrm{GL}_n$ dev
Externí odkaz:
http://arxiv.org/abs/2112.06860
Autor:
Jo, Yeongseong
Publikováno v:
Pacific J. Math. 322 (2023) 301-340
Let $F$ be a non-archimedean local field of odd characteristic $p > 0$. In this paper, we consider local exterior square $L$-functions $L(s,\pi,\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\pi,BF)$, and Asai $L$-functions $L(s,\pi,As)$ of an irreduc
Externí odkaz:
http://arxiv.org/abs/2109.05865
Autor:
Jo, Yeongseong
By applying the formula for essential Whittaker functions established by Matringe and Miyauchi, we study five integral representations for irreducible admissible generic representations of ${\rm GL}_n$ over $p$-adic fields. In each case, we show that
Externí odkaz:
http://arxiv.org/abs/2106.08234
Autor:
Jo, Yeongseong, Krishnamurthy, Muthu
We compute the local coefficient attached to a pair $(\pi_1,\pi_2)$ of supercuspidal (complex) representations of the general linear group using the theory of types and covers \`{a} la Bushnell-Kutzko. In the process, we obtain another proof of a wel
Externí odkaz:
http://arxiv.org/abs/2104.04876
Autor:
Jo, Yeongseong
Let $\pi$ be an irreducible admissible (complex) representation of $GL(2)$ over a non-archimedean characteristic zero local field with odd residual characteristic. In this paper we prove the equality between the local symmetric square $L$-function as
Externí odkaz:
http://arxiv.org/abs/2008.07379
Autor:
Jo, Yeongseong, Krishnamurthy, Muthu
Let $F$ be a non-archimedean local field of characteristic not equal to $2$ and let $E/F$ be a quadratic algebra. We prove the stability of local factors attached to (complex) irreducible admissible representations of $GL(2,E)$ via the Rankin-Selberg
Externí odkaz:
http://arxiv.org/abs/1906.06585