Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Jlali Lotfi"'
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 163-171 (2024)
We prove the nonexistence of global solutions for the following wave equations with structural damping and nonlinear memory source term utt+(−Δ)α2u+(−Δ)β2ut=∫0t(t−s)δ−1∣u(s)∣pds{u}_{tt}+{\left(-\Delta )}^{\tfrac{\alpha }{2}}u+{\lef
Externí odkaz:
https://doaj.org/article/274a4232bbdc47fd82c9dbdc857f132f
Autor:
Jlali Lotfi, Benameur Jamel
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 101-190 (2024)
In this article, we study the global existence, uniqueness, and continuity for the solution of incompressible convective Brinkman-Forchheimer on the whole space R3{{\mathbb{R}}}^{3} when 4μβ≥14\mu \beta \ge 1. Additionally, we give an asymptotic
Externí odkaz:
https://doaj.org/article/5bb8e649edc94e9bae63b496fb75dd7b
Autor:
Jlali Lotfi
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 898-908 (2021)
In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3}))
Externí odkaz:
https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd
Autor:
Jlali, Lotfi, Samet, Bessem
We consider semilinear higher order (in time) evolution inequalities posed in an exterior domain of the half-space $\mathbb{R}_+^N$, $N\geq 2$, and involving differential operators of the form $\mathcal{L}_\lambda =-\Delta +\lambda/|x|^2$, where $\la
Externí odkaz:
http://arxiv.org/abs/2302.05994
Publikováno v:
Mathematical Methods in the Applied Sciences; 11/15/2024, Vol. 47 Issue 16, p12567-12589, 23p
Autor:
Benameur, Jamel, Jlali, Lotfi
In this paper we prove, if $u$ is a global solution to Navier-Stokes equations in the Sobolev-Gevrey spaces $H^1_{a,\sigma}(\mathbb R^3)$, then $\|u(t)\|_{H^1_{a,\sigma}}$ decays to zero as time goes to infinity. Fourier analysis is used.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/1502.04196
Autor:
Benameur, Jamel, Jlali, Lotfi
In this paper, we prove that there exists a unique global solution of $3D$ Navier-Stokes equation if $\exp(a|D|^{1/\sigma})u^0\in{\mathcal{X}}^{-1}(\mathbb R^3)$ and $\|u^0\|_{{\mathcal{X}}^{-1}}<\nu$. Moreover, we will show that $\|\exp(a|D|^{1/\sig
Externí odkaz:
http://arxiv.org/abs/1502.04197
Autor:
Benameur, Jamel, Jlali, Lotfi
In \cite{JB1}, Benameur proved a blow-up result of the non regular solution of $(NSE)$ in the Sobolev-Gevrey spaces. In this paper we improve this result, precisely we give an exponential type explosion in Sobolev-Gevrey spaces with less regularity o
Externí odkaz:
http://arxiv.org/abs/1502.04194
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
BENAMEUR, JAMEL1 jamelbenameur@gmail.com, JLALI, LOTFI2 lotfihocin@gmail.com
Publikováno v:
Electronic Journal of Differential Equations. 2016, Vol. 2016 Issue 1-128, p1-13. 13p.