Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Jiri Ocenasek"'
Autor:
Jiri Ocenasek
OP VVV Electrical Engineering Technologies with High-Level of Embedded Intelligence CZ.02.1.01/0.0/0.0/18_069/0009855, project SGS-2021-021 Main focus of this work is to design a three–phase rectifier based on silicon–carbide power diodes. Main p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::531e471b4894f709bd00846632c2c55c
http://hdl.handle.net/11025/46745
http://hdl.handle.net/11025/46745
Publikováno v:
Journal of Chromatography B. 817:225-230
Mass spectrometry data generated in differential profiling of complex protein samples are classically exploited using database searches. In addition, quantitative profiling is performed by various methods, one of them using isotopically coded affinit
Publikováno v:
GECCO
The paper presents a new concept of parallel bivariate EDA algorithm using the island-based model with the ring topology. The traditional migration of individuals is compared with a newly proposed technique for the migration of probabilistic models.
Autor:
Jiri Ocenasek
Publikováno v:
Towards a New Evolutionary Computation ISBN: 9783540290063
Towards a New Evolutionary Computation
Towards a New Evolutionary Computation
This chapter presents an entropy-based convergence measurement applicable to Estimation of Distribution Algorithms. Based on the measured entropy, the time point when the generation of new solutions becomes ineffective, can be detected. The proposed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1092ebd57a39afc8885a7dc4bad5d245
https://doi.org/10.1007/3-540-32494-1_2
https://doi.org/10.1007/3-540-32494-1_2
Publikováno v:
Scalable Optimization via Probabilistic Modeling ISBN: 9783540349532
Scalable Optimization via Probabilistic Modeling
Scalable Optimization via Probabilistic Modeling
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d9dab8ec04a2faf93049fdfc424eb0d8
https://doi.org/10.1007/978-3-540-34954-9_8
https://doi.org/10.1007/978-3-540-34954-9_8
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540230922
PPSN
PPSN
This paper presents a hybrid evolutionary optimization strategy combining the Mixed Bayesian Optimization Algorithm (MBOA) with variance adaptation as implemented in Evolution Strategies. This new approach is intended to circumvent some of the defici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f65a7b38d7207d3f0024273e9f90f8f5
https://doi.org/10.1007/978-3-540-30217-9_36
https://doi.org/10.1007/978-3-540-30217-9_36
Publikováno v:
Genetic and Evolutionary Computation – GECCO 2004 ISBN: 9783540223436
GECCO (2)
GECCO (2)
We discuss the computational complexity of random 2D Ising spin glasses, which represent an interesting class of constraint satisfaction problems for black box optimization. Two extremal cases are considered: (1) the ± J spin glass, and (2) the Gaus
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ba39d10861ba4ead5e19111db0a4a9f8
https://doi.org/10.1007/978-3-540-24855-2_4
https://doi.org/10.1007/978-3-540-24855-2_4
Publikováno v:
Genetic and Evolutionary Computation — GECCO 2003 ISBN: 9783540406037
GECCO
GECCO
Estimation of Distribution Algorithms (EDAs) use a probabilistic model of promising solutions found so far to obtain new candidate solutions of an optimization problem. This paper focuses on the design of parallel EDAs. More specifically, the paper d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b212748beddc60c21ded8a53a0e059e4
https://doi.org/10.1007/3-540-45110-2_1
https://doi.org/10.1007/3-540-45110-2_1
Autor:
Stefan Kern, Sibylle D. Müller, Dirk Büche, Petros Koumoutsakos, Nikolaus Hansen, Jiri Ocenasek
Publikováno v:
Natural Computing. 3:355-356
We present a comparative review of Evolutionary Algorithms that generate new population members by sampling a probability distribution constructed during the optimization process. We present a unifying formulation for five such algorithms that enable
Autor:
Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, Petros Koumoutsakos
Publikováno v:
Natural Computing; 2004, Vol. 3 Issue 1, p77-112, 36p