Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Jintana Sanwong"'
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2016 (2016)
Let X be a nonempty set. For a fixed subset Y of X, let FixX,Y be the set of all self-maps on X which fix all elements in Y. Then FixX,Y is a regular monoid under the composition of maps. In this paper, we characterize the natural partial order on Fi
Externí odkaz:
https://doaj.org/article/bf475bda24e34eddb167e3454065e34a
Publikováno v:
Mathematics, Vol 6, Iss 8, p 134 (2018)
Let T(X,Y) be the semigroup consisting of all total transformations from X into a fixed nonempty subset Y of X. For an equivalence relation ρ on X, let ρ^ be the restriction of ρ on Y, R a cross-section of Y/ρ^ and define T(X,Y,ρ,R) to be the se
Externí odkaz:
https://doaj.org/article/381f027ce06442d0a38c5c10c5017a26
Autor:
Boorapa Singha, Jintana Sanwong
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2011 (2011)
Suppose that X is an infinite set with |X|≥q≥ℵ0 and I(X) is the symmetric inverse semigroup defined on X. In 1984, Levi and Wood determined a class of maximal subsemigroups MA (using certain subsets A of X) of the Baer-Levi semigroup BL(q)={α
Externí odkaz:
https://doaj.org/article/75f941f6d89a42ceb3b4bd06f4d03131
Autor:
Jintana Sanwong, Worachead Sommanee
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2008 (2008)
Let T(X) be the full transformation semigroup on the set X and let T(X,Y)={α∈T(X):Xα⊆Y}. Then T(X,Y) is a sub-semigroup of T(X) determined by a nonempty subset Y of X. In this paper, we give a necessary and sufficient condition for T(X,Y) to be
Externí odkaz:
https://doaj.org/article/f5bab135a3c6476eb14f3510227a3307
Autor:
Worachead Sommanee, Jintana Sanwong
Publikováno v:
Semigroup Forum. 104:166-179
Autor:
Kritsada Sangkhanan, Jintana Sanwong
Publikováno v:
Semigroup Forum. 100:568-584
Let Y be a subset of X and T(X, Y) the set of all functions from X into Y. Then, under the operation of composition, T(X, Y) is a subsemigroup of the full transformation semigroup T(X). Let E be an equivalence on X. Define a subsemigroup $$T_E(X,Y)$$
Autor:
Worachead Sommanee, Jintana Sanwong
Publikováno v:
Semigroup Forum. 104:516-516
Autor:
Kritsada Sangkhanan, Jintana Sanwong
Publikováno v:
Semigroup Forum. 98:456-471
Let P(V) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V, define the following subsemigroups of P(V): $$\begin{aligned} PT(V,W)&=\{\alpha \in P(V)\ |\ V\alpha \subseteq W\},\\ T(V,W)
Publikováno v:
Semigroup Forum. 96:581-595
In a paper published in 1994, Umar defined an interesting class of transformation semigroups which naturally generalizes the Vagner one-point completion of the symmetric inverse semigroup. In this paper we prove some isomorphism theorems for finite s
Publikováno v:
Semigroup Forum. 96:565-580
Let G be a group. We show that the Birget–Rhodes prefix expansion $$G^{Pr}$$ and the Margolis–Meakin expansion M(X; f) of G with respect to $$f:X\rightarrow G$$ can be regarded as inverse subsemigroups of a common E-unitary inverse semigroup P. W