Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Jin Sakuma"'
Publikováno v:
2022 IEEE Spoken Language Technology Workshop (SLT).
Publikováno v:
Interspeech 2022.
Publikováno v:
Interspeech 2021.
Autor:
Jin Sakuma, Naoki Yoshinaga
Publikováno v:
CoNLL
We present a method for applying a neural network trained on one (resource-rich) language for a given task to other (resource-poor) languages. We accomplish this by inducing a mapping from pre-trained cross-lingual word embeddings to the embedding la
Autor:
Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, Ikuya Yamada, Jin Sakuma, Akari Asai, Hiroyuki Shindo
Publikováno v:
Web of Science
EMNLP (Demos)
EMNLP (Demos)
The embeddings of entities in a large knowledge base (e.g., Wikipedia) are highly beneficial for solving various natural language tasks that involve real world knowledge. In this paper, we present Wikipedia2Vec, a Python-based open-source tool for le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90af7667075aaa93759c14190164a3c5
http://arxiv.org/abs/1812.06280
http://arxiv.org/abs/1812.06280