Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Jin, Liang‐Yan"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jin-Liang Yan1 yanjinliang3333@163.com, Liang-Hong Zheng2 413845939@qq.com, Fu-Qiang Lu3 724075305@qq.com, Wen-Jun Li4 1395418838@qq.com
Publikováno v:
Engineering Letters. Jun2022, Vol. 30 Issue 2, p290-300. 11p.
Publikováno v:
Complexity, Vol 2020 (2020)
This paper concerns the synchronization problem for a class of stochastic memristive neural networks with inertial term, linear coupling, and time-varying delay. Based on the interval parametric uncertainty theory, the stochastic inertial memristor-b
Externí odkaz:
https://doaj.org/article/ff0e4e8207064ec3b9f89db4e5422a6d
Autor:
Zhu, Xiao‐Bin, Xu, Yao‐Yao, Li, Liu‐Cheng, Sun, Jia‐Bin, Wang, Yu‐Zhen, Chen, Jie, Wang, Chen, Zhang, Su, Jin, Liang‐Yan
Publikováno v:
Drug Development Research; Feb2024, Vol. 85 Issue 1, p1-10, 10p
Publikováno v:
Complexity, Vol 2020 (2020)
This paper concerns the synchronization problem for a class of stochastic memristive neural networks with inertial term, linear coupling, and time-varying delay. Based on the interval parametric uncertainty theory, the stochastic inertial memristor-b
Autor:
Jin-Liang Yan1 yanjinliang3333@163.com, Liang-Hong Zheng2 413845939@qq.com
Publikováno v:
IAENG International Journal of Applied Mathematics. Dec2019, Vol. 49 Issue 4, p548-560. 13p. 1 Diagram, 7 Charts, 20 Graphs.
Autor:
Liang-Hong Zheng, Jin-Liang Yan
Publikováno v:
Computational Mathematics and Mathematical Physics. 59:1582-1596
To preserve some invariant properties of the original differential equation is an important criterion to judge the success of a numerical simulation. In this paper, we construct, analyze and numerically validate a class of momentum-preserving finite
Autor:
Jin-Liang Yan1 yanjinliang3333@163.com, Liang-Hong Zheng2 413845939@qq.com
Publikováno v:
IAENG International Journal of Applied Mathematics. 2018, Vol. 48 Issue 4, p67-76. 10p.
Publikováno v:
Physics of Wave Phenomena. 26:243-258
In this paper, we introduce a linearized energy-preserving scheme which preserves the discrete global energy of solutions to the improved Korteweg−deVries equation. The method presented is based on the finite volume element method, by resorting to
Autor:
Jin-liang Yan1 yanjinliang3333@163.com, Liang-hong Zheng2 413845939@qq.com
Publikováno v:
IAENG International Journal of Applied Mathematics. Jun2017, Vol. 47 Issue 2, p223-232. 10p.