Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Jill Pipher"'
Publikováno v:
Dindos, M, Hofmann, S & Pipher, J 2023, ' Regularity and Neumann Problems for Operators with Real Coefficients Satisfying Carleson Conditions ', Journal of functional analysis, vol. 285, no. 6, 110024 . https://doi.org/10.1016/j.jfa.2023.110024
In this paper, we continue the study of a class of second order elliptic operators of the form $\mathcal L=\mbox{div}(A\nabla\cdot)$ in a domain above a Lipschitz graph in $\mathbb R^n,$ where the coefficients of the matrix $A$ satisfy a Carleson mea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a99ccda0dfde870223afa2fc6ea0ae8f
http://arxiv.org/abs/2207.10366
http://arxiv.org/abs/2207.10366
Publikováno v:
Designs, Codes and Cryptography. 88:505-532
In this paper we revisit the modular lattice signature scheme and its efficient instantiation known as pqNTRUSign. First, we show that a modular lattice signature scheme can be based on a standard lattice problem. The fundamental problem that needs t
Publikováno v:
Anal. PDE 12, no. 5 (2019), 1325-1355
We introduce the iterated commutator for the Riesz transforms in the multi-parameter flag setting, and prove the upper bound of this commutator with respect to the symbol $b$ in the flag BMO space. Our methods require the techniques of semigroups, ha
Autor:
Jill Pipher, Martin Dindoš
Publikováno v:
Dindos, M & Pipher, J 2020, ' Extrapolation of the Dirichlet problem for elliptic equations with complex coefficients ', Journal of functional analysis, vol. 279, no. 7, 108693 . https://doi.org/10.1016/j.jfa.2020.108693
In this paper, we prove an extrapolation result for complex coefficient divergence form operators that satisfy a strong ellipticity condition known as $p$-{\it ellipticity}. Specifically, let $\Omega$ be a chord-arc domain in $\mathbb R^n$ and the op
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f921fba73d69418d30efde441ebcc2d3
https://hdl.handle.net/20.500.11820/ef7e8cc3-7d90-4b48-9487-5bacc8810e9f
https://hdl.handle.net/20.500.11820/ef7e8cc3-7d90-4b48-9487-5bacc8810e9f
Autor:
Jill Pipher, Maria Chudnovsky, Ingrid Daubechies, Melanie Matchett Wood, Margaret Readdy, Alice Chang, Dusa McDuff, Lillian B. Pierce, Sophie Morel, Carina Curto, Lauren Williams, Chelsea Walton, Gigliola Staffilani, Amie Wilkinson, Emily Riehl, Fern Y. Hunt, Tara S. Holm, Olga Holtz, Eva Tardos, Andrea R. Nahmod, Joan Birman, Carolyn S. Gordon, Rosemary Guzman, Christine Taylor, Fan Chung Graham, Karen E. Smith, Trachette Jackson, Irene Fonseca, Melody Chan
Publikováno v:
Notices of the American Mathematical Society. 65:248-303
Autor:
Talithia Williams, Ronald E. Mickens, Jill Pipher, Gunnar Carlsson, Federico Ardila, Dana Randall, André Neves, Ruth Charney, Erica N. Walker
Publikováno v:
Notices of the American Mathematical Society. 65:6-18
Publikováno v:
American Journal of Mathematics. 143:333-334
Autor:
Jill Pipher, Martin Dindoš
Publikováno v:
Dindos, M & Pipher, J 2019, ' Regularity theory for solutions to second order elliptic operators with complex coefficients and the L^p Dirichlet problem ', Advances in Mathematics, vol. 341, pp. 255-298 . https://doi.org/10.1016/j.aim.2018.07.035
We establish a new theory of regularity for elliptic complex valued second order equations of the form L = div A ( ∇ ⋅ ) , when the coefficients of the matrix A satisfy a natural algebraic condition, a strengthened version of a condition known in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::caf97b4753d26170b7a7b209659085bf
https://www.pure.ed.ac.uk/ws/files/69589349/ComplexCoefficientJuly2018.pdf
https://www.pure.ed.ac.uk/ws/files/69589349/ComplexCoefficientJuly2018.pdf
We consider the operator $L=-{\rm div}(A\nabla)$, where the $n\times n$ matrix $A$ is real-valued, elliptic, with the symmetric part of $A$ in $L^\infty(\mathbb{R}^n)$, and the anti-symmetric part of $A$ only belongs to the space $BMO(\mathbb{R}^n)$,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2de9e00f2deb3b701dee3755d7825647
The present paper establishes the first result on the absolute continuity of elliptic measure with respect to the Lebesgue measure for a divergence form elliptic operator with non-smooth coefficients that have a BMO anti-symmetric part. In particular
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf45b48ccfdb58bbf96d2b4a541ad8a7