Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Jijiang Sun"'
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 3, Pp 633-654 (2024)
In this paper, we studied the existence of multiple normalized solutions to the following Kirchhoff type equation:$ \begin{equation*} \begin{cases} -\left(a\varepsilon^2+b\varepsilon\int_{\mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+V(x)u = \mu u+f(u)
Externí odkaz:
https://doaj.org/article/2e25064d38dc49978da29080a321b110
Autor:
Jing Hu, Jijiang Sun
Publikováno v:
Electronic Research Archive, Vol 31, Iss 5, Pp 2580-2594 (2023)
In this paper, for given mass $ m > 0 $, we focus on the existence and nonexistence of constrained minimizers of the energy functional $ \begin{equation*} I(u): = \frac{a}{2}\int_{\mathbb{R}^3}\left|\nabla u\right|^2dx+\frac{b}{4}\left(\int_{\math
Externí odkaz:
https://doaj.org/article/bc901149bf73417fa74f168ef64fef10
Autor:
Xionghui Xu, Jijiang Sun
Publikováno v:
AIMS Mathematics, Vol 6, Iss 12, Pp 13057-13071 (2021)
In this paper, we consider the following periodic discrete nonlinear Schrödinger equation $ \begin{equation*} Lu_{n}-\omega u_{n} = g_{n}(u_{n}), \qquad n = (n_{1}, n_{2}, ..., n_{m})\in \mathbb{Z}^{m}, \end{equation*} $ where $ \omega\notin \
Externí odkaz:
https://doaj.org/article/043b3d67335844d28a5e3492dc4b7df0
Autor:
Guanwei Chen, Jijiang Sun
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-11 (2021)
Abstract By using variational methods we obtain infinitely many nontrivial solutions for a class of nonperiodic Schrödinger lattice systems, where the nonlinearities are sublinear at both zero and infinity.
Externí odkaz:
https://doaj.org/article/405014abfbf042d6ba3600fd3a0a0c41
Publikováno v:
Fractional Calculus and Applied Analysis. 26:672-693
Publikováno v:
Fixed Point Theory; 2024, Vol. 25 Issue 1, p399-417, 19p
Publikováno v:
Complex Variables and Elliptic Equations. 68:932-962
Autor:
Xionghui Xu, Jijiang Sun
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 74
Autor:
Jijiang Sun, Xionghui Xu
Publikováno v:
AIMS Mathematics, Vol 6, Iss 12, Pp 13057-13071 (2021)
In this paper, we consider the following periodic discrete nonlinear Schrödinger equation \begin{document}$ \begin{equation*} Lu_{n}-\omega u_{n} = g_{n}(u_{n}), \qquad n = (n_{1}, n_{2}, ..., n_{m})\in \mathbb{Z}^{m}, \end{equation*} $\end{document
Publikováno v:
Nonlinear Analysis. 186:33-54
In this paper, we consider the following nonlinear Kirchhoff type problem: − a + b ∫ R 3 | ∇ u | 2 Δ u + V ( x ) u = f ( u ) , in R 3 , u ∈ H 1 ( R 3 ) , where a , b > 0 are constants, the nonlinearity f is superlinear at infinity with subcr