Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jihwan Youn"'
Autor:
Tristan S.W. Stevens, Elizabeth B. Herbst, Ben Luijten, Boudewine W. Ossenkoppele, Thierry J. Voskuil, Shiying Wang, Jihwan Youn, Claudia Errico, Massimo Mischi, Nicola Pezzotti, Ruud J.G. van Sloun
Publikováno v:
2022 IEEE International Ultrasonics Symposium (IUS)
The image quality of ultrasound localization microscopy (ULM) images is driven by the ability to accurately detect and track the location of microbubbles (MBs) in vascular networks. This task becomes increasingly challenging in imaging environments w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b756970383232088f7dbaaca4f6fcb61
https://doi.org/10.1109/ius54386.2022.9958562
https://doi.org/10.1109/ius54386.2022.9958562
Autor:
Niels Bent Larsen, Erik Vilain Thomsen, Martin Lind Ommen, Matthias Bo Stuart, Jihwan Youn, Jørgen Arendt Jensen
Publikováno v:
Youn, J, Ommen, M L, Stuart, M B, Thomsen, E V, Larsen, N B & Jensen, J A 2020, ' Detection and Localization of Ultrasound Scatterers Using Convolutional Neural Networks ', IEEE Transactions on Medical Imaging, vol. 39, no. 12, pp. 3855-3867 . https://doi.org/10.1109/TMI.2020.3006445
Delay-and-sum (DAS) beamforming is unable to identify individual scatterers when their density is so high that their point spread functions overlap. This paper proposes a convolutional neural network (CNN)-based method to detect and localize high-den
Autor:
Ben Luijten, Matthias Bo Stuart, Yonina C. Eldar, Ruud J. G. van Sloun, Jihwan Youn, Jørgen Arendt Jensen, Mikkel Schou
Publikováno v:
2021 IEEE International Ultrasonics Symposium (IUS)
Ultrasound localization microscopy (ULM) can break the diffraction limit of ultrasound imaging. However, a long data acquisition time is often required due to the use of low concentrations of microbubbles (MBs) for high localization accuracy. Lately,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3537080ff79cb761c8d46ed204f77a01
https://research.tue.nl/en/publications/abd4eca2-55f5-483e-a588-a95cc0cf6636
https://research.tue.nl/en/publications/abd4eca2-55f5-483e-a588-a95cc0cf6636
Autor:
Ben Luijten, Jørgen Arendt Jensen, Ruud J. G. van Sloun, Jihwan Youn, Matthias Bo Stuart, Yonina C. Eldar
Publikováno v:
2020 IEEE International Ultrasonics Symposium (IUS)
Youn, J, Luijten, B, Stuart, M B, Eldar, Y C, van Sloun, R J G & Jensen, J A 2020, Deep Learning Models for Fast Ultrasound Localization Microscopy . in 2020 IEEE International Ultrasonics Symposium . IEEE, 2020 IEEE International Ultrasonics Symposium, Las Vegas, Nevada, United States, 06/09/2020 . https://doi.org/10.1109/IUS46767.2020.9251561
Youn, J, Luijten, B, Stuart, M B, Eldar, Y C, van Sloun, R J G & Jensen, J A 2020, Deep Learning Models for Fast Ultrasound Localization Microscopy . in 2020 IEEE International Ultrasonics Symposium . IEEE, 2020 IEEE International Ultrasonics Symposium, Las Vegas, Nevada, United States, 06/09/2020 . https://doi.org/10.1109/IUS46767.2020.9251561
Ultrasound localization microscopy (ULM) can surpass the resolution limit of conventional ultrasound imaging. However, a trade-off between resolution and data acquisition time is introduced. For microbubble (MB) localization, centroid detection is co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70283311de2550b9f706eebf7b561d67
https://research.tue.nl/nl/publications/09119603-3099-4e58-bbbc-fb1d4f4ffe53
https://research.tue.nl/nl/publications/09119603-3099-4e58-bbbc-fb1d4f4ffe53
Autor:
Jørgen Arendt Jensen, Martin Lind Ommen, Jihwan Youn, Niels Bent Larsen, Erik Vilain Thomsen, Matthias Bo Stuart
Publikováno v:
Youn, J, Ommen, M L, Stuart, M B, Thomsen, E V, Larsen, N B & Jensen, J A 2019, Ultrasound Multiple Point Target Detection and Localization using Deep Learning . in Proceedings of 2019 IEEE International Ultrasonics Symposium . IEEE, pp. 1937-1940, 2019 IEEE International Ultrasonics Symposium, Glasgow, United Kingdom, 06/10/2019 . https://doi.org/10.1109/ultsym.2019.8925914
Super-resolution imaging (SRI) can achieve subwavelength resolution by detecting and tracking intravenously injected microbubbles (MBs) over time. However, current SRI is limited by long data acquisition times since the MB detection still relies on d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4804ff0d659cc793333aa81efc3a1082
https://orbit.dtu.dk/en/publications/bddf6993-19bc-4f61-905e-fd2399ab8887
https://orbit.dtu.dk/en/publications/bddf6993-19bc-4f61-905e-fd2399ab8887
Publikováno v:
IROS
In this paper, a realtime pseudo-structure extraction algorithm for 3D indoor point cloud data (PCD) is proposed. This algorithm is called Convex Cut (CC) because of its two main steps: cutting the PCD with arbitrary planes, and extracting convex par