Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jihad Souissi"'
Autor:
Jihad Souissi
Publikováno v:
Проблемы анализа, Vol 13 (31), Iss 1, Pp 71-81 (2023)
This paper investigates a first-order linear differential operator 𝒥𝜉, where 𝜉 = (𝜉1, 𝜉2)\in (C^2\(0,0), and 𝐷 := 𝑑/𝑑𝑥. The operator is defined as 𝒥𝜉 := 𝑥(𝑥𝐷+ I) + 𝜉1 I + 𝜉2𝐷, with I representing the
Externí odkaz:
https://doaj.org/article/98c50daa6e984009b61db406cad623e0
Autor:
Baghdadi Aloui, Jihad Souissi
Publikováno v:
Ural Mathematical Journal, Vol 8, Iss 2 (2022)
In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzer
Externí odkaz:
https://doaj.org/article/65ad8617b1534f8fbf6c4e4fcf090cff
Autor:
Baghdadi Aloui, Jihad Souissi
Publikováno v:
Ural Mathematical Journal, Vol 6, Iss 2 (2020)
In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator \(X-c\), where \(c\) is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the \(q\
Externí odkaz:
https://doaj.org/article/994577760f944edd896392369caf8007
Autor:
Jihad Souissi, Baghdadi Aloui
Publikováno v:
The Ramanujan Journal. 57:1355-1365
In this paper, we show that, up to a dilatation, the $$q^2$$ -analogue of generalized Hermite and $$q^2$$ -analogue of generalized Gegenbauer polynomials are the only q-Dunkl-classical symmetric orthogonal polynomials.
Autor:
Baghdadi Aloui, Jihad Souissi
Publikováno v:
Bulletin of the Belgian Mathematical Society - Simon Stevin. 28
Let $\{L^{(\alpha)}_n\}_{n\geq 0}$, ($\alpha\neq-m, \ m\geq1$), be the monic orthogonal sequence of Laguerre polynomials. We give a new differential operator, denoted here $\mathscr{L}^{+}_{\alpha}$, raises the degree and also the parameter of $L^{(\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7e0e40db37a0dfd0e7749a78c5d46e9d
https://doi.org/10.22541/au.160621025.50358772/v1
https://doi.org/10.22541/au.160621025.50358772/v1