Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Jiao, Feiran"'
Autor:
Ye, Xianghua, Guo, Dazhou, Tseng, Chen-kan, Ge, Jia, Hung, Tsung-Min, Pai, Ping-Ching, Ren, Yanping, Zheng, Lu, Zhu, Xinli, Peng, Ling, Chen, Ying, Chen, Xiaohua, Chou, Chen-Yu, Chen, Danni, Yu, Jiaze, Chen, Yuzhen, Jiao, Feiran, Xin, Yi, Huang, Lingyun, Xie, Guotong, Xiao, Jing, Lu, Le, Yan, Senxiang, Jin, Dakai, Ho, Tsung-Ying
Background: The current clinical workflow for esophageal gross tumor volume (GTV) contouring relies on manual delineation of high labor-costs and interuser variability. Purpose: To validate the clinical applicability of a deep learning (DL) multi-mod
Externí odkaz:
http://arxiv.org/abs/2110.05280
Autor:
Jiao, Feiran
Publikováno v:
Theses and Dissertations.
Ordinal response variables abound in scientific and quantitative analyses, whose outcomes comprise a few categorical values that admit a natural ordering, so that their values are often represented by non-negative integers, for instance, pain score (
Autor:
Jiao, Feiran1 (AUTHOR), Chen, Yeh-Fong2 (AUTHOR) YehFong.Chen@fda.hhs.gov, Min, Min1 (AUTHOR), Jimenez, Sara2 (AUTHOR)
Publikováno v:
Journal of Biopharmaceutical Statistics. 2022, Vol. 32 Issue 1, p21-33. 13p. 1 Diagram, 6 Charts, 2 Graphs.
Autor:
Chan, Kung-Sik *, Jiao, Feiran, Mikulski, Marek A., Gerke, Alicia, Guo, Junfeng, Newell, John D., Jr, Hoffman, Eric A., Thompson, Brad, Lee, Chang Hyun, Fuortes, Laurence J.
Publikováno v:
In Academic Radiology March 2016 23(3):304-314
Autor:
Chen, Kun, Hoffman, Eric A., Seetharaman, Indu, Jiao, Feiran, Lin, Ching-Long, Chan, Kung-Sik
Publikováno v:
The Annals of Applied Statistics, 2016 Dec 01. 10(4), 1880-1906.
Externí odkaz:
http://www.jstor.org/stable/44252219
Autor:
Ye, Xianghua, Guo, Dazhou, Tseng, Chen-Kan, Ge, Jia, Hung, Tsung-Min, Pai, Ping-Ching, Ren, Yanping, Zheng, Lu, Zhu, Xinli, Peng, Ling, Chen, Ying, Chen, Xiaohua, Chou, Chen-Yu, Chen, Danni, Yu, Jiaze, Chen, Yuzhen, Jiao, Feiran, Xin, Yi, Huang, Lingyun, Xie, Guotong, Xiao, Jing, Lu, Le, Yan, Senxiang, Jin, Dakai, Ho, Tsung-Ying
Publikováno v:
Frontiers in Oncology, Vol 11 (2022)
Frontiers in Oncology
Frontiers in Oncology
Background: The current clinical workflow for esophageal gross tumor volume (GTV) contouring relies on manual delineation of high labor-costs and interuser variability. Purpose: To validate the clinical applicability of a deep learning (DL) multi-mod
Autor:
Jiao, Feiran1 (AUTHOR), Tu, Wenda2 (AUTHOR), Jimenez, Sara1,3 (AUTHOR), Crentsil, Victor1,3 (AUTHOR), Chen, Yeh-Fong3 (AUTHOR) yehfong.chen@fda.hhs.gov
Publikováno v:
Journal of Biopharmaceutical Statistics. 2019, Vol. 29 Issue 5, p845-859. 15p. 1 Diagram, 7 Charts, 4 Graphs.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.