Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Jia, Xupeng"'
Publikováno v:
Food Chemistry: X, Vol 24, Iss , Pp 101835- (2024)
An aptasensor with dual-outputs was developed for malathion detection. Fe-MOF was synthesized to design favorable signal probes for catalytic amplification. Owing to the excellent peroxidase-like activity of Fe-MOF, the redox reaction was catalyzed t
Externí odkaz:
https://doaj.org/article/313779fa5c214b9d851779df43a67a11
Autor:
Jia, Xupeng, Li, Dongmei
Deep learning based single-channel speech enhancement tries to train a neural network model for the prediction of clean speech signal. There are a variety of popular network structures for single-channel speech enhancement, such as TCNN, UNet, WaveNe
Externí odkaz:
http://arxiv.org/abs/2201.00480
Two-stage model and optimal SI-SNR for monaural multi-speaker speech separation in noisy environment
In daily listening environments, speech is always distorted by background noise, room reverberation and interference speakers. With the developing of deep learning approaches, much progress has been performed on monaural multi-speaker speech separati
Externí odkaz:
http://arxiv.org/abs/2004.06332
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing.
Speech enhancement has been widely used in speech recognition, multimedia systems and hearing aids etc. In this study, we explore a new post-processing strategy for speech enhancement. The main goal of proposed post-processing method is to reduce spe
Autor:
Jia Xupeng, Li Dongmei
Publikováno v:
2016 IEEE 13th International Conference on Signal Processing (ICSP).
A novel data-driven non-intrusive method to assess speech intelligibility is proposed. The approach uses a new segment-based feature called Sum-Sorted Spectrogram (SSS) and a logistic regression network to predict the intelligibility score of degrade