Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Jiří Šíma"'
Autor:
Jiří Šíma
Publikováno v:
Geoinformatics FCE CTU, Vol 10, Iss 0, Pp 15-26 (2013)
The paper illustrates the development of digital aerial survey and digital elevation models covering the entire area of the Czech Republic at the beginning of 21st century. It also presents some results of systematic investigation of their quality pa
Externí odkaz:
https://doaj.org/article/85171a71696045aeaa5a3fb5f898cda9
Autor:
Jiří Šíma, Stanislav Žák
Recently, an interest in constructing pseudorandom or hitting set generators for restricted branching programs has increased, which is motivated by the fundamental issue of derandomizing space-bounded computations. Such constructions have been known
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0eb2de5a40589787a3cac11398db5e99
https://fi.episciences.org/7043
https://fi.episciences.org/7043
Autor:
Jiří Šíma
Publikováno v:
Neural Networks. 128:199-215
In order to refine the analysis of the computational power of discrete-time recurrent neural networks (NNs) between the binary-state NNs which are equivalent to finite automata (level 3 in the Chomsky hierarchy), and the analog-state NNs with rationa
Autor:
Petr Savický, Jiří Šíma
Publikováno v:
Theoretical Computer Science. 720:1-23
Motivated by the analysis of neural net models between integer and rational weights, we introduce a so-called cut language over a real digit alphabet, which contains finite β-expansions (i.e. base-β representations) of the numbers less than a given
Autor:
Jiří Šíma1 sima@cs.cas.cz, Stanislav Žáky1 stan@cs.cas.cz
Publikováno v:
Fundamenta Informaticae. 2017, Vol. 152 Issue 4, p397-409. 13p.
Autor:
Stanislav Žák, Jiří Šíma
Publikováno v:
Fundamenta Informaticae. 152:397-409
We formulate a very general tight diagonalization method for the Blum complexity measures satisfying two additional axioms related to our diagonalizer machine. We apply this method to two new, mutually related, distance and buer complexities of Turin
Autor:
Jiří Šíma, Martin Plátek
Publikováno v:
Neural Information Processing ISBN: 9783030367176
ICONIP (3)
ICONIP (3)
We analyze the computational power of discrete-time recurrent neural networks (NNs) with the saturated-linear activation function within the Chomsky hierarchy. This model restricted to integer weights coincides with binary-state NNs with the Heavisid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dfa2680593232b1ed01225490885ae74
https://doi.org/10.1007/978-3-030-36718-3_7
https://doi.org/10.1007/978-3-030-36718-3_7
Autor:
Jiří Šíma, Jérémie Cabessa
Publikováno v:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation ISBN: 9783030304867
ICANN (1)
ICANN (1)
Synfire rings are important neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We describe a robust and optimal-size implementation of finite state automata with neural networks comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d86d68492b20e686904752ee6a371c14
https://doi.org/10.1007/978-3-030-30487-4_62
https://doi.org/10.1007/978-3-030-30487-4_62
Autor:
Hanžl, Pavel, Krystof Verner, Buriánek, David, Jiří Šíma, Janderkova, Jana, Paleček, Martin, Tomáš Hroch, Martínek, Karel, Megerssa, Leta, Hrdličková, Kristýna, Vaclav Metelka
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::633ab5ccddcd4bf432a573c8ebba9e09
Autor:
Jiří Šíma
Publikováno v:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation ISBN: 9783030304867
We refine the analysis of binary-state neural networks with \(\alpha \) extra analog neurons (\(\alpha \)ANNs). For rational weights, it has been known that online 1ANNs accept context-sensitive languages including examples of non-context-free langua
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2a55ae6ebca0e5a4f9142958892cdaed
https://doi.org/10.1007/978-3-030-30487-4_31
https://doi.org/10.1007/978-3-030-30487-4_31