Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ji, Zhengran"'
The recent rapid advancement of machine learning has been driven by increasingly powerful models with the growing availability of training data and computational resources. However, real-time decision-making tasks with limited time and sparse learnin
Externí odkaz:
http://arxiv.org/abs/2410.15181
Learning collaborative behaviors is essential for multi-agent systems. Traditionally, multi-agent reinforcement learning solves this implicitly through a joint reward and centralized observations, assuming collaborative behavior will emerge. Other st
Externí odkaz:
http://arxiv.org/abs/2409.19831
With the increasing deployment of artificial intelligence (AI) technologies, the potential of humans working with AI agents has been growing at a great speed. Human-AI teaming is an important paradigm for studying various aspects when humans and AI a
Externí odkaz:
http://arxiv.org/abs/2408.00170
The ionization edges encoded in the electron energy loss spectroscopy (EELS) spectra enable advanced material analysis including composition analyses and elemental quantifications. The development of the parallel EELS instrument and fast, sensitive d
Externí odkaz:
http://arxiv.org/abs/2209.13026
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Microscopy & Microanalysis; 2023 Supplement, p1924-1924, 1p
Publikováno v:
Microscopy & Microanalysis; 2023 Supplement, p1865-1865, 1p
Autor:
Kong L; Department of Physics, University of California, Irvine, CA, 92617, USA., Ji Z; Department of Physics, University of California, Irvine, CA, 92617, USA., Xin HL; Department of Physics, University of California, Irvine, CA, 92617, USA. huolin.xin@uci.edu.
Publikováno v:
Scientific reports [Sci Rep] 2022 Dec 23; Vol. 12 (1), pp. 22183. Date of Electronic Publication: 2022 Dec 23.