Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Ji, Yong-Gwan"'
If two conducting or insulating inclusions are closely located, the gradient of the solution may become arbitrarily large as the distance between inclusions tends to zero, resulting in high concentration of stress in between two inclusions. This happ
Externí odkaz:
http://arxiv.org/abs/2404.03258
We prove that the space of vector fields on the boundary of a bounded domain with the Lipschitz boundary in three dimensions is decomposed into three subspaces: elements of the first one extend to the inside the domain as divergence-free and rotation
Externí odkaz:
http://arxiv.org/abs/2211.15879
Autor:
Ji, Yong-Gwan, Kang, Hyeonbae
This paper concerns the spectral properties of the Neumann-Poincar\'e operator on $m$-fold rotationally symmetric planar domains. An $m$-fold rotationally symmetric simply connected domain $D$ is realized as the $m$th-root transform of a certain doma
Externí odkaz:
http://arxiv.org/abs/2201.08077
Autor:
Ji, Yong-Gwan, Kang, Hyeonbae
We consider the field concentration for the transmission problems of the homogeneous and inhomogeneous conductivity equations in the presence of closely located circular inclusions. We revisit these well-studied problems by exploiting the spectral na
Externí odkaz:
http://arxiv.org/abs/2105.06093
An inclusion is said to be neutral to uniform fields if upon insertion into a homogenous medium with a uniform field it does not perturb the uniform field at all. It is said to be weakly neutral if it perturbs the uniform field mildly. Such inclusion
Externí odkaz:
http://arxiv.org/abs/2001.04610
Publikováno v:
Ann. Inst. Henri Poincar\'e (C) Anal. Non Lineaire 36(7) (2019) 1817-1828
We address the question whether there is a three-dimensional bounded domain such that the Neumann--Poincar\'e operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is
Externí odkaz:
http://arxiv.org/abs/1810.09693
Autor:
Ji, Yong-Gwan, Kang, Hyeonbae
It is proved that if a bounded domain in three dimensions satisfies a certain concavity condition, then the Neumann-Poincar\'e operator on the boundary of the domain or its inversion in a sphere has at least one negative eigenvalue. The concavity con
Externí odkaz:
http://arxiv.org/abs/1808.10621
We first investigate spectral properties of the Neumann-Poincar\'e (NP) operator for the Lam\'e system of elasto-statics. We show that the elasto-static NP operator can be symmetrized in the same way as that for Laplace operator. We then show that ev
Externí odkaz:
http://arxiv.org/abs/1510.00989
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Annales de l'Institut Henri Poincaré / Analyse non linéaire November-December 2019 36(7):1817-1828