Zobrazeno 1 - 10
of 202
pro vyhledávání: '"Ji, Lizhen"'
A crucial assumption underlying the most current theory of machine learning is that the training distribution is identical to the test distribution. However, this assumption may not hold in some real-world applications. In this paper, we develop a le
Externí odkaz:
http://arxiv.org/abs/2302.04438
A current assumption of most clustering methods is that the training data and future data are taken from the same distribution. However, this assumption may not hold in most real-world scenarios. In this paper, we propose an information theoretical i
Externí odkaz:
http://arxiv.org/abs/2302.04421
Publikováno v:
IEEE Transactions on Computational Imaging, vol. 6, pp. 1561-1570, 2020
Multi-focus image fusion (MFF) is a popular technique to generate an all-in-focus image, where all objects in the scene are sharp. However, existing methods pay little attention to defocus spread effects of the real-world multi-focus images. Conseque
Externí odkaz:
http://arxiv.org/abs/2012.14678
Autor:
Greenfield, Mark, Ji, Lizhen
Using the identification of the symmetric space $\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$ with the Teichm\"uller space of flat $n$-tori of unit volume, we explore several metrics and compactifications of these spaces, drawing inspiration both from T
Externí odkaz:
http://arxiv.org/abs/1903.10655
Autor:
Greenfield, Mark, Ji, Lizhen
We develop a natural and geometric way to realize the hyperbolic plane as the moduli space of marked genus 1 Riemann surfaces. To do so, a metric is defined on the Teichm\"uller space of the torus, inspired by Thurston's Lipschitz metric for the case
Externí odkaz:
http://arxiv.org/abs/1707.00818
Autor:
Ji, Lizhen, Schilling, Anna-Sofie
We establish a natural and geometric 1-1 correspondence between projective toric varieties of dimension $n$ and horofunction compactifications of $\mathbb{R}^n$ with respect to rational polyhedral norms. For this purpose, we explain a topological mod
Externí odkaz:
http://arxiv.org/abs/1705.07599
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ji, Lizhen, Wang, Chang
Publikováno v:
Archive for History of Exact Sciences, 2020 Jul 01. 74(4), 381-400.
Externí odkaz:
https://www.jstor.org/stable/45296046
Autor:
Ji, Lizhen, Jost, Juergen
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is stratifed according to genus, and it carries a metric and a measure that induce a Ri
Externí odkaz:
http://arxiv.org/abs/1611.08732