Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Jevtić, Filip D."'
Mathematical research is often motivated by the desire to reach a beautiful result or to prove it in an elegant way. Mathematician's work is thus strongly influenced by his aesthetic judgments. However, the criteria these judgments are based on remai
Externí odkaz:
http://arxiv.org/abs/2405.05379
The Bier sphere $Bier(\mathcal{G}) = Bier(K) = K\ast_\Delta K^\circ$ and the canonical fan $Fan(\Gamma) = Fan(K)$ are combinatorial/geometric companions of a simple game $\mathcal{G} = (P,\Gamma)$ (equivalently the associated simplicial complex $K$),
Externí odkaz:
http://arxiv.org/abs/2309.14848
Autor:
Jevtić, Filip D., Vujošević, Slobodan
In his ontological argument G\"{o}del says nothing about its underlying logic. The argument is modal and at least of second-order and since S5 axiom is used so it is widely accepted that the logic of the argument is the S5 second-order modal logic. H
Externí odkaz:
http://arxiv.org/abs/2205.10632
Autor:
Jevtić, Filip D., Zivaljević, Rade T.
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2023 Apr 01. 17(1), 101-119.
Externí odkaz:
https://www.jstor.org/stable/27281398
Autor:
Jevtić, Filip D., Živaljević, Rade T.
A Bier sphere $Bier(K) = K\ast_\Delta K^\circ$, defined as the deleted join of a simplicial complex and its Alexander dual $K^\circ$, is a purely combinatorial object (abstract simplicial complex). Here we study a hidden geometry of Bier spheres by d
Externí odkaz:
http://arxiv.org/abs/2108.00618
Autor:
Jevtić, Filip D., Živaljević, Rade T.
Motivated by classical Euler's $Tonnetz$, we introduce and study the combinatorics and topology of more general simplicial complexes $Tonn^{n,k}(L)$ of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the genera
Externí odkaz:
http://arxiv.org/abs/2002.09184
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The problem of deciding if a given triangulation of a sphere can be realized as the boundary sphere of a simplicial, convex polytope is known as the "Simplicial Steinitz problem". It is known by an indirect and non-constructive argument that a vast m
Externí odkaz:
http://arxiv.org/abs/1812.00397
We show that the cyclohedron (Bott-Taubes polytope) $W_n$ arises as the dual of a Kantorovich-Rubinstein polytope $KR(\rho)$, where $\rho$ is a quasi-metric (asymmetric distance function) satisfying strict triangle inequality. From a broader perspect
Externí odkaz:
http://arxiv.org/abs/1703.06612
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.