Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Jesse Sherwood"'
[Finding suitable common feature sets for use in multiclass subject independent brain-computer interface (BCI) classifiers is problematic due to characteristically large inter-subject variation of electroencephalographic signatures. We propose a wrap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b3b4c257e6f11b6ed8c6bfab356906a
https://doi.org/10.1101/2020.02.07.938548
https://doi.org/10.1101/2020.02.07.938548
Autor:
Reza Derakhshani, Jesse Sherwood
Publikováno v:
IJCNN
Given their multiresolution temporal and spectral locality, wavelets are powerful candidates for decomposition, feature extraction, and classification of non-stationary electroencephalographic (EEG) signals for brain-computer interface (BCI) applicat