Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Jesse Railo"'
Publikováno v:
Calculus of Variations and Partial Differential Equations, 62 (4)
This article investigates nonlocal, quasilinear generalizations of the classical biharmonic operator (- Δ) 2. These fractional p -biharmonic operators appear naturally in the variational characterization of the optimal fractional Poincaré constants
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32c1fa1879c5ace4954f243a9947d92a
https://hdl.handle.net/20.500.11850/607320
https://hdl.handle.net/20.500.11850/607320
Autor:
Jesse Railo, Philipp Zimmermann
Publikováno v:
Inverse Problems and Imaging.
We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain $\Omega \subset \mathbb{R}^n$ and any disjoi
Publikováno v:
Advances in Mathematics
We study an inverse problem for the fractional Schr\"odinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the order of the fractional Laplacian. We show that one can uniquely recover t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7853e64150f8a82f69596772f54f06bf
http://urn.fi/URN:NBN:fi:jyu-202202241654
http://urn.fi/URN:NBN:fi:jyu-202202241654
The geodesic ray transform, the mixed ray transform and the transverse ray transform of a tensor field on a manifold can all be seen as what we call mixing ray transforms, compositions of the geodesic ray transform and an invertible linear map on ten
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9de0f1901675d687d9c18c29c5ece794
http://arxiv.org/abs/2009.01043
http://arxiv.org/abs/2009.01043
Autor:
Jesse Railo
We study reconstruction of an unknown function from its $d$-plane Radon transform on the flat $n$-torus when $1 \leq d \leq n-1$. We prove new reconstruction formulas and stability results with respect to weighted Bessel potential norms. We solve the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f670bc140a117f05cc8cb50077d9997
http://arxiv.org/abs/1909.00495
http://arxiv.org/abs/1909.00495
Autor:
Jesse Railo, Joonas Ilmavirta
We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and in dimension three and highe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58f7812ccd458b6a5764faee51f48785
http://arxiv.org/abs/1901.03525
http://arxiv.org/abs/1901.03525
We present a new computed tomography (CT) method for inverting the Radon transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method Torus CT. We prove new inversion formulas for integrable functions, solve a mini
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4e044af31f94e08e3fa0aabea14cea4
Publikováno v:
Inverse Problems. 34:044004
We study the geodesic X-ray transform on Cartan-Hadamard manifolds, and prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvatu
Autor:
Rigel Kivi, Johanna Tamminen, Janne Hakkarainen, Marko Laine, Huilin Chen, Jesse Railo, Pauli Heikkinen, Simo Tukiainen
Publikováno v:
Journal of Geophysical Research: Atmospheres. 121:10-10,327
We introduce an inversion method that uses dimension reduction for the retrieval of atmospheric methane (CH4) profiles. Uncertainty analysis is performed using the Markov chain Monte Carlo (MCMC) statistical estimation. These techniques are used to r