Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Jerzy Kalina"'
Publikováno v:
Bulletin of the Polish Academy of Sciences Mathematics. 60:165-176
Publikováno v:
Journal of Geometry and Physics. 61:2410-2416
Gradients, i.e., irreducible (with respect to the orthogonal group) components of the covariant derivative on a foliation, are considered under the assumption that the foliation has holonomy invariant transversal volume form.
Publikováno v:
Bulletin of the Polish Academy of Sciences Mathematics. 58:179-188
Weitzenbock formula for SL(q) foliations is derived. Its linear part is a relative trace of the relative curvature operator acting on vecore valued forms.
Publikováno v:
Annales Polonici Mathematici. 67:111-120
od z) Abstract. Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as dierential operators ob
Autor:
Jerzy Kalina, Mariusz Frydrych
Publikováno v:
Foliations: Geometry And Dynamics
Publikováno v:
Annales Polonici Mathematici. 46:105-114
Autor:
Julian Ławrynowicz, Jerzy Kalina
Publikováno v:
Banach Center Publications. 11:111-119
Autor:
Jerzy Kalina
Publikováno v:
Annales Polonici Mathematici. 41:175-183
Autor:
Jerzy Kalina
Publikováno v:
Annales Polonici Mathematici. 41:167-173
Autor:
Antoni Pierzchalski, Jerzy Kalina
Publikováno v:
Deformations of Mathematical Structures ISBN: 9789401076937
The famous Laplace-Beltrami operator △ acting on differential forms on a Riemannian manifold M determines in some sense the geometry of M. For example the Hodge decomposition theorem implies that in the compact case $$ X(M) = Trace {e^{{ - t{\Delta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::03712ff6279cf91a1fea2fd3eae0c8d6
https://doi.org/10.1007/978-94-009-2643-1_1
https://doi.org/10.1007/978-94-009-2643-1_1