Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jeroen Van der Meeren"'
Publikováno v:
The Legacy of Kurt Schütte ISBN: 9783030494230
Diana Schmidt, in her Habilitationsschrift in 1979, completely classified the maximal order types of the natural tree embeddability relations for finite rooted structured labeled trees. Her results since have found interesting applications in proof t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e565859eff6eff551804ecd20ad799bc
https://doi.org/10.1007/978-3-030-49424-7_14
https://doi.org/10.1007/978-3-030-49424-7_14
Publikováno v:
Archive for Mathematical Logic. 56:79-118
In this article we provide an intrinsic characterization of the famous Howard---Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with res
A quasi-order $Q$ induces two natural quasi-orders on $P(Q)$, but if $Q$ is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq showed that moving from a well-quasi-order $Q$ to the qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96bb91bec168304da3413677a279284d
http://arxiv.org/abs/1504.07452
http://arxiv.org/abs/1504.07452
Publikováno v:
Evolving Computability ISBN: 9783319200279
CiE
CiE
By a syntactical construction we define an order-preserving mapping of Gordeev’s ordinal notation system \(PRJ(P)\) into Buchholz’s ordinal notation system \(OT(P)\) where \(P\) represents a limit ordinal. Since Gordeev already showed that \(OT(P
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::82e3368f6cfdd5d92b748f73c086ac93
https://doi.org/10.1007/978-3-319-20028-6_36
https://doi.org/10.1007/978-3-319-20028-6_36
In this article we investigate whether the addition-free theta functions form a canonical notation system for the linear versions of Friedman's well-partial-orders with the so-called gap-condition over a finite set of labels. Rather surprisingly, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f93af91195285e4d3bbe0983dec86f42
In this article we characterize a countable ordinal known as the big Veblen number in terms of natural well-partially ordered tree-like structures. To this end, we consider generalized trees where the immediate subtrees are grouped in pairs with addr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bcd23ec317451ec76b0ef6c301646656