Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Jeremy Lovejoy"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AG,..., Iss Proceedings (2006)
We investigate class of well-poised basic hypergeometric series $\tilde{J}_{k,i}(a;x;q)$, interpreting these series as generating functions for overpartitions defined by multiplicity conditions. We also show how to interpret the $\tilde{J}_{k,i}(a;1;
Externí odkaz:
https://doaj.org/article/92e3d80e0c9f4068bec454c091e3f167
Autor:
Isaac A. Broudy, Jeremy Lovejoy
Publikováno v:
Involve, a Journal of Mathematics. 15:489-505
Autor:
Jeremy Lovejoy
Publikováno v:
Research in Number Theory. 8
Publikováno v:
International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (02), pp.311-327. ⟨10.1142/S1793042120400254⟩
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (02), pp.311-327. ⟨10.1142/S1793042120400254⟩
International audience; We prove a new mock theta function identity related to the partition rank modulo 3 and 9. As a consequence, we obtain the [Formula: see text]-dissection of the rank generating function modulo [Formula: see text]. We also evalu
Autor:
Jeremy Lovejoy, Robert Osburn
Publikováno v:
Journal of Knot Theory and Its Ramifications
Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2021, 30 (05), pp.2150031. ⟨10.1142/S0218216521500310⟩
Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2021, 30 (05), pp.2150031. ⟨10.1142/S0218216521500310⟩
International audience; Using a result of Takata, we prove a formula for the colored Jones polynomial of the double twist knots [Formula: see text] and [Formula: see text] where [Formula: see text] and [Formula: see text] are positive integers. In th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c63e5e30f0e4c79f0c233114535cf5ad
https://hal.archives-ouvertes.fr/hal-03382638
https://hal.archives-ouvertes.fr/hal-03382638
Publikováno v:
International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (03), pp.603-619. ⟨10.1142/S1793042120400345⟩
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (03), pp.603-619. ⟨10.1142/S1793042120400345⟩
International audience; Motivated by certain [Formula: see text]-series of Ramanujan, we examine two overpartition difference functions. We give both combinatorial and asymptotic formulas for the differences and show that they are always positive. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c625f4216c859216541e0db724b338cd
https://hal.archives-ouvertes.fr/hal-03382670
https://hal.archives-ouvertes.fr/hal-03382670
Publikováno v:
European Journal of Combinatorics
European Journal of Combinatorics, Elsevier, 2020, 89, pp.103159. ⟨10.1016/j.ejc.2020.103159⟩
European Journal of Combinatorics, Elsevier, 2020, 89, pp.103159. ⟨10.1016/j.ejc.2020.103159⟩
Let p o ( n ) denote the number of partitions of n with more odd parts than even parts and let p e ( n ) denote the number of partitions of n with more even parts than odd parts. Using q -series transformations we find a generating function for p o (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dbabcaf562ccbc40ce5ec0f7738d6d21
https://hal.archives-ouvertes.fr/hal-03382657
https://hal.archives-ouvertes.fr/hal-03382657
Autor:
Min-Joo Jang, Jeremy Lovejoy
Publikováno v:
International Journal of Number Theory. 14:2023-2033
We prove several combinatorial identities involving overpartitions whose smallest parts are even. These follow from an infinite product generating function for certain four-colored overpartitions.
Autor:
Jeremy Lovejoy, Byungchan Kim
Publikováno v:
The Ramanujan Journal. 46:743-764
In the first paper of this series, we described how to find conjugate Bailey pairs from residual identities of Ramanujan-type partial theta identities. Here we carry this out for four multisum residual identities of Warnaar and two more due to the au
Publikováno v:
Journal of Number Theory. 175:117-133
In the first part of this paper we introduce overpartitions into distinct parts without k-sequences. When k = 1 these are the partitions into parts differing by at least two which occur in the Rogers–Ramanujan identities. For general k we compute a