Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jeremy Hahn"'
Autor:
Jeremy Hahn, XiaoLin Danny Shi
Publikováno v:
Inventiones mathematicae. 221:731-776
We show that Lubin–Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application of the Goerss–Hopkins–Miller theorem to algebras with involution. For each height n, we compute the entire homotopy fixed poi
Autor:
Jeremy Hahn, Allen Yuan
Publikováno v:
Advances in Mathematics. 348:412-455
The space of based loops in S L n ( C ) , also known as the affine Grassmannian of S L n ( C ) , admits an E 2 or fusion product. Work of Mitchell and Richter proves that this based loop space stably splits as an infinite wedge sum. We prove that the
Autor:
Jeremy Hahn, Dylan Wilson
We equip $\mathrm{BP} \langle n \rangle$ with an $\mathbb{E}_3$-$\mathrm{BP}$-algebra structure, for each prime $p$ and height $n$. The algebraic $K$-theory of this ring is of chromatic height exactly $n+1$, and the map $\mathrm{K}(\mathrm{BP}\langle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92303737b04a0af593bd8a30ba9e6b12
Autor:
Dylan Wilson, Jeremy Hahn
We give a new proof, independent of Lin's theorem, of the Segal conjecture for the cyclic group of order two. The key input is a calculation, as a Hopf algebroid, of the Real topological Hochschild homology of $\mathbb{F}_2$. This determines the $\ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb612ab78db0467ed5e5e3539c37a046
http://arxiv.org/abs/1911.05687
http://arxiv.org/abs/1911.05687
Autor:
Jeremy Hahn, Allen Yuan
Victor Snaith gave a construction of periodic complex bordism by inverting the Bott element in the suspension spectrum of $BU$. This presents an $\mathbb{E}_\infty$ structure on periodic complex bordism by different means than the usual Thom spectrum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f859b36fe32835c0d0ea3981e4f16c16
http://arxiv.org/abs/1905.00072
http://arxiv.org/abs/1905.00072
Autor:
Dylan Wilson, Jeremy Hahn
Publikováno v:
Geom. Topol. 24, no. 6 (2020), 2709-2748
We prove that the $G$-equivariant mod $p$ Eilenberg--MacLane spectrum arises as an equivariant Thom spectrum for any finite, $p$-power cyclic group $G$, generalizing a result of Behrens and the second author in the case of the group $C_2$. We also es
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1331be0d8c42f7dc0216dda870387eaa
http://arxiv.org/abs/1804.05292
http://arxiv.org/abs/1804.05292