Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Jeremy E. Kozdon"'
Autor:
Brittany A. Erickson, Junle Jiang, Valère Lambert, Sylvain D. Barbot, Mohamed Abdelmeguid, Martin Almquist, Jean-Paul Ampuero, Ryosuke Ando, Camilla Cattania, Alexandre Chen, Luca Dal Zilio, Shuai Deng, Eric M. Dunham, Ahmed E. Elbanna, Alice-Agnes Gabriel, Tobias W. Harvey, Yihe Huang, Yoshihiro Kaneko, Jeremy E. Kozdon, Nadia Lapusta, Duo Li, Meng Li, Chao Liang, Yajing Liu, So Ozawa, Andrea Perez-Silva, Casper Pranger, Paul Segall, Yudong Sun, Prithvi Thakur, Carsten Uphoff, Ylona van Dinther, Yuyun Yang
Publikováno v:
Bulletin of the Seismological Society of America, 113 (2)
Numerical modeling of earthquake dynamics and derived insight for seismic hazard relies on credible, reproducible model results. The sequences of earthquakes and aseismic slip (SEAS) initiative has set out to facilitate community code comparisons, an
Publikováno v:
Journal of Geophysical Research: Solid Earth. 128
In this work a non-conservative balance law formulation is considered that encompasses the rotating, compressible Euler equations for dry atmospheric flows. We develop a semi-discretely entropy stable discontinuous Galerkin method on curvilinear mesh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96d9508a20372dbd2678fcfb6eb5dfd9
http://arxiv.org/abs/2110.15920
http://arxiv.org/abs/2110.15920
Autor:
Zhaoyi Shen, Lucas C. Wilcox, Thomas H. Gibson, Yassine Tissaoui, Maciej Waruszewski, Tapio Schneider, Francis X. Giraldo, Kiran Pamnany, Simone Marras, Jeremy E. Kozdon, Akshay Sridhar, Valentin Churavy, Simon Byrne, Charles Kawczynski
We introduce ClimateMachine, a new open-source atmosphere modeling framework which uses the Julia language and is designed to be scalable on central processing units (CPUs) and graphics processing units (GPUs). ClimateMachine uses a common framework
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30cc278585c2a885f80ac3e2d5e7d7d0
https://doi.org/10.5194/gmd-2021-335
https://doi.org/10.5194/gmd-2021-335
Curvilinear, multiblock summation-by-parts finite difference operators with the simultaneous approximation term method provide a stable and accurate framework for solving the wave equation in second order form. That said, the standard method can beco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8461f8a830ada3560b59d4cf4fde6f58
http://arxiv.org/abs/2106.00706
http://arxiv.org/abs/2106.00706
We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1c2164a7628803f7404680892a1e5e2
http://arxiv.org/abs/2002.00116
http://arxiv.org/abs/2002.00116
Autor:
Junle Jiang, Eric M. Dunham, Meng Wei, Ahmed Elbanna, Xiao Ma, Michael Barall, Benjamin Idini, Valère Lambert, Yingdi Luo, Camilla Cattania, Nadia Lapusta, Paul Segall, Lauren S. Abrahams, Martijn van den Ende, Jean-Paul Ampuero, Sylvain Barbot, Pengcheng Shi, Maricela Best Mckay, Yuri Fialko, Ruth A. Harris, Kali L. Allison, Brittany A. Erickson, Jeremy E. Kozdon, Yajing Liu
Numerical simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) have made great progress over the past decades to address important questions in earthquake physics and fault mechanics. However, significant challenges in SEAS modeling remai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcb702e14c95e468625724633a0aabf9
https://eartharxiv.org/2dmp5
https://eartharxiv.org/2dmp5
Publikováno v:
Journal of Computational Physics. 303:372-395
The article of record as published by be found at http://dx.doi.org/10.1016/j.jcp.2015.09.048 In computations, it is now common to surround artificial boundaries of a computational domain with a perfectly matched layer (PML) of finite thickness in or
The Galerkin difference (GD) basis is a set of continuous, piecewise polynomials defined using a finite difference like grid of degrees of freedom. The one dimensional GD basis functions are naturally extended to multiple dimensions using the tensor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e2379ad077cfdedc5048b9e268b212a5
https://hdl.handle.net/10945/59212
https://hdl.handle.net/10945/59212
Autor:
Michael Barall, Surendra Nadh Somala, Khurram S. Aslam, D. Roten, Víctor M. Cruz-Atienza, Zhenguo Zhang, Eric M. Dunham, Thomas Ulrich, Benchun Duan, Kim B. Olsen, Kangchen Bai, Eric G. Daub, Zheqiang Shi, Jean-Paul Ampuero, K. Withers, Brad T. Aagaard, Yoshihiro Kaneko, Xiaofei Chen, Yuko Kase, Jeremy E. Kozdon, Kenneth Duru, Alice-Agnes Gabriel, Bin Luo, Luis A. Dalguer, S. A. Bydlon, Stephanie Wollherr, Shuo Ma, Ruth A. Harris, Josué Tago, Christian Pelties, Dunyu Liu
Publikováno v:
Seismological Research Letters
The article of record as published may be found at http://dx.doi.org/10.1785/0220170222 We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types