Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Jere Kaivosoja"'
Autor:
Sergio Vélez, Mar Ariza-Sentís, Marko Panić, Bojana Ivošević, Dimitrije Stefanović, Jere Kaivosoja, João Valente
Publikováno v:
Smart Agricultural Technology, Vol 8, Iss , Pp 100488- (2024)
Innovations in precision agriculture enhance complex tasks, reduce environmental impact, and increase food production and cost efficiency. One of the main challenges is ensuring rapid information availability for autonomous vehicles and standardizing
Externí odkaz:
https://doaj.org/article/e655029e9cc34de49044d5f92d803ca5
Autor:
Raquel Alves Oliveira, José Marcato Junior, Celso Soares Costa, Roope Näsi, Niko Koivumäki, Oiva Niemeläinen, Jere Kaivosoja, Laura Nyholm, Hemerson Pistori, Eija Honkavaara
Publikováno v:
Agronomy, Vol 12, Iss 6, p 1352 (2022)
Agricultural grasslands are globally important for food production, biodiversity, and greenhouse gas mitigation. Effective strategies to monitor grass sward properties, such as dry matter yield (DMY) and nitrogen concentration, are crucial when aimin
Externí odkaz:
https://doaj.org/article/702d70bbaf684a97a83c7c276b265225
Autor:
Kirsi Karila, Raquel Alves Oliveira, Johannes Ek, Jere Kaivosoja, Niko Koivumäki, Panu Korhonen, Oiva Niemeläinen, Laura Nyholm, Roope Näsi, Ilkka Pölönen, Eija Honkavaara
Publikováno v:
Remote Sensing, Vol 14, Iss 11, p 2692 (2022)
The objective of this study is to investigate the potential of novel neural network architectures for measuring the quality and quantity parameters of silage grass swards, using drone RGB and hyperspectral images (HSI), and compare the results with t
Externí odkaz:
https://doaj.org/article/18e58c6e52b444fc9aafa571ece01702
Autor:
Santosh Hiremath, Samantha Wittke, Taru Palosuo, Jere Kaivosoja, Fulu Tao, Maximilian Proll, Eetu Puttonen, Pirjo Peltonen-Sainio, Pekka Marttinen, Hiroshi Mamitsuka
Publikováno v:
PLoS ONE, Vol 16, Iss 12, p e0251952 (2021)
Identifying crop loss at field parcel scale using satellite images is challenging: first, crop loss is caused by many factors during the growing season; second, reliable reference data about crop loss are lacking; third, there are many ways to define
Externí odkaz:
https://doaj.org/article/68f6433148e146389170a67da41ac543
Autor:
Jere Kaivosoja, Juho Hautsalo, Jaakko Heikkinen, Lea Hiltunen, Pentti Ruuttunen, Roope Näsi, Oiva Niemeläinen, Madis Lemsalu, Eija Honkavaara, Jukka Salonen
Publikováno v:
Remote Sensing, Vol 13, Iss 7, p 1238 (2021)
The development of UAV (unmanned aerial vehicle) imaging technologies for precision farming applications is rapid, and new studies are published frequently. In cases where measurements are based on aerial imaging, there is the need to have ground tru
Externí odkaz:
https://doaj.org/article/8a06f3ed7287413bb2f291628eda5d74
Autor:
Jussi Mäkynen, Paula Litkey, Teemu Hakala, Ilkka Pölönen, Jere Kaivosoja, Heikki Saari, Eija Honkavaara, Liisa Pesonen
Publikováno v:
Remote Sensing, Vol 5, Iss 10, Pp 5006-5039 (2013)
Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it p
Externí odkaz:
https://doaj.org/article/7b94b5137a09484cbf19796883d2836f
Autor:
Roope Näsi, Niko Viljanen, Jere Kaivosoja, Katja Alhonoja, Teemu Hakala, Lauri Markelin, Eija Honkavaara
Publikováno v:
Remote Sensing, Vol 10, Iss 7, p 1082 (2018)
The timely estimation of crop biomass and nitrogen content is a crucial step in various tasks in precision agriculture, for example in fertilization optimization. Remote sensing using drones and aircrafts offers a feasible tool to carry out this task
Externí odkaz:
https://doaj.org/article/b0b68a11997841928d69d2b38ec5232f
Autor:
Jere Kaivosoja, Hanna Huitu
Publikováno v:
Metsätieteen aikakauskirja, Vol 2015, Iss 1 (2015)
Externí odkaz:
https://doaj.org/article/df4b0a7edffd4dcd8a5705aa4ef11b6e
Drones detect local variations and provide tools for agriculture
BRANCHES will produce and share more than 50 case studies, considered Best Practices. The selected case studies will be summarized in Practice Abstracts (PAs), documents tailored f
BRANCHES will produce and share more than 50 case studies, considered Best Practices. The selected case studies will be summarized in Practice Abstracts (PAs), documents tailored f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8944bed3062096e3b725fda14db80aca
Publikováno v:
IFAC-PapersOnLine. 55:6-11