Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Jeong, Yeonjeong"'
Autor:
Zhang, Zhibo, Jang, Jongseong, Trabelsi, Chiheb, Li, Ruiwen, Sanner, Scott, Jeong, Yeonjeong, Shim, Dongsub
Contrastive learning has led to substantial improvements in the quality of learned embedding representations for tasks such as image classification. However, a key drawback of existing contrastive augmentation methods is that they may lead to the mod
Externí odkaz:
http://arxiv.org/abs/2111.14271
Autor:
Li, Ruiwen, Zhang, Zhibo, Li, Jiani, Trabelsi, Chiheb, Sanner, Scott, Jang, Jongseong, Jeong, Yeonjeong, Shim, Dongsub
Recent years have seen the introduction of a range of methods for post-hoc explainability of image classifier predictions. However, these post-hoc explanations may not always be faithful to classifier predictions, which poses a significant challenge
Externí odkaz:
http://arxiv.org/abs/2105.14162
Autor:
Sattarzadeh, Sam, Sudhakar, Mahesh, Plataniotis, Konstantinos N., Jang, Jongseong, Jeong, Yeonjeong, Kim, Hyunwoo
Visualizing the features captured by Convolutional Neural Networks (CNNs) is one of the conventional approaches to interpret the predictions made by these models in numerous image recognition applications. Grad-CAM is a popular solution that provides
Externí odkaz:
http://arxiv.org/abs/2102.07805
Autor:
Sudhakar, Mahesh, Sattarzadeh, Sam, Plataniotis, Konstantinos N., Jang, Jongseong, Jeong, Yeonjeong, Kim, Hyunwoo
Explainable AI (XAI) is an active research area to interpret a neural network's decision by ensuring transparency and trust in the task-specified learned models. Recently, perturbation-based model analysis has shown better interpretation, but backpro
Externí odkaz:
http://arxiv.org/abs/2102.07799
Autor:
Sattarzadeh, Sam, Sudhakar, Mahesh, Lem, Anthony, Mehryar, Shervin, Plataniotis, K. N., Jang, Jongseong, Kim, Hyunwoo, Jeong, Yeonjeong, Lee, Sangmin, Bae, Kyunghoon
As an emerging field in Machine Learning, Explainable AI (XAI) has been offering remarkable performance in interpreting the decisions made by Convolutional Neural Networks (CNNs). To achieve visual explanations for CNNs, methods based on class activa
Externí odkaz:
http://arxiv.org/abs/2010.00672
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sattarzadeh, Sam, Sudhakar, Mahesh, Lem, Anthony, Mehryar, Shervin, Plataniotis, K. N., Jang, Jongseong, Kim, Hyunwoo, Jeong, Yeonjeong, Lee, Sangmin, Bae, Kyunghoon
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 35:11639-11647
As an emerging field in Machine Learning, Explainable AI (XAI) has been offering remarkable performance in interpreting the decisions made by Convolutional Neural Networks (CNNs). To achieve visual explanations for CNNs, methods based on class activa
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jeong, Yeonjeong, Kim, Dong-Kyu
Publikováno v:
Search Algorithms and Applications
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=intech______::e0a87264f173bfa8b1552451e2b66334
http://www.intechopen.com/articles/show/title/dissimilar-alternative-path-search-algorithm-using-a-candidate-path-set
http://www.intechopen.com/articles/show/title/dissimilar-alternative-path-search-algorithm-using-a-candidate-path-set