Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Jensen, Bernt Tore"'
Autor:
Jensen, Bernt Tore, Su, Xiuping
Let $D$ be the Auslander algebra of $\mathbb{C}[t]/(t^n)$, which is quasi-hereditary, and $\mathcal{F}_\Delta$ the subcategory of good $D$-modules. For any $\mathsf{J}\subseteq[1, n-1]$, we construct a subcategory $\mathcal{F}_\Delta(\mathsf{J})$ of
Externí odkaz:
http://arxiv.org/abs/2408.04753
The homogeneous coordinate ring $\mathbb{C}[\operatorname{Gr}(k,n)]$ of the Grassmannian is a cluster algebra, with an additive categorification $\operatorname{CM}C$. Thus every $M\in\operatorname{CM}C$ has a cluster character $\Psi_M\in\mathbb{C}[\o
Externí odkaz:
http://arxiv.org/abs/2404.14572
In \cite{JKS} we gave an (additive) categorification of Grassmannian cluster algebras, using the category $\CM(A)$ of Cohen-Macaulay modules for a certain Gorenstein order $A$. In this paper, using a cluster tilting object in the same category $\CM(A
Externí odkaz:
http://arxiv.org/abs/1904.07849
Publikováno v:
In Advances in Mathematics 17 September 2022 406
In \cite{JS} Jensen and Su constructed 0-Schur algebras on double flag varieties. The construction leads to a presentation of 0-Schur algebras using quivers with relations and the quiver approach naturally gives rise to a new class of algebras. That
Externí odkaz:
http://arxiv.org/abs/1705.06084
Autor:
Jensen, Bernt Tore, Su, Xiuping
Seaweed Lie algebras are a natural generalisation of parabolic subalgebras of reductive Lie algebras. The well-known Richardson Theorem says that the adjoint action of a parabolic group has a dense open orbit in the nilpotent radical of its Lie algeb
Externí odkaz:
http://arxiv.org/abs/1601.01755
A Hecke endomorphism algebra is a natural generalisation of the $q$-Schur algebra associated with the symmetric group to a Coxeter group. For Weyl groups, B. Parshall, L. Scott and the first author \cite{DPS,DPS4} investigated the stratification stru
Externí odkaz:
http://arxiv.org/abs/1511.04135
We study the structure of the $0$-Schur algebra $S_0(n, r)$ following the geometric construction of $S_0(n, r)$ by Jensen and Su \cite{JS}. The main results are the construction and classification of indecomposable projective modules. In addition, we
Externí odkaz:
http://arxiv.org/abs/1312.5487
Autor:
Darmajid, Jensen, Bernt Tore
We study varieties of complexes of projective modules with fixed ranks, and relate these varieties to the varieties of their homologies. We show that for an algebra of global dimension at most two, these two varieties are related by a pair of morphis
Externí odkaz:
http://arxiv.org/abs/1312.2058
We describe a ring whose category of Cohen-Macaulay modules provides an additive categorification of the cluster algebra structure on the homogeneous coordinate ring of the Grassmannian of k-planes in n-space. More precisely, there is a cluster chara
Externí odkaz:
http://arxiv.org/abs/1309.7301