Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Jens Zumbrägel"'
Autor:
Jens Zumbrägel
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 26:80-84
Zusammenfassung Die moderne Public-Key-Kryptographie, begründet durch die bahnbrechende Arbeit von Diffie und Hellman, ist seit jeher mit der Schwierigkeit des diskreten Logarithmusproblems verbunden. Allerdings ist in Körpern kleiner Charakteristi
Publikováno v:
Mathematics of Computation
Mathematics of Computation, 2021, 90 (332), ⟨10.1090/mcom/3669⟩
Mathematics of Computation, American Mathematical Society, 2021, 90 (332)
Mathematics of Computation, 2021, 90 (332), ⟨10.1090/mcom/3669⟩
Mathematics of Computation, American Mathematical Society, 2021, 90 (332)
This paper reports on the computation of a discrete logarithm in the finite field $\mathbb F_{2^{30750}}$, breaking by a large margin the previous record, which was set in January 2014 by a computation in $\mathbb F_{2^{9234}}$. The present computati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17865d0a6d90b06be2e45ae1f9753caf
Autor:
Jens Zumbrägel, T. G. Nam
Publikováno v:
Journal of Pure and Applied Algebra. 225:106548
We investigate the algebra of a Hausdorff ample groupoid, introduced by Steinberg, over a commutative semiring S. In particular, we obtain a complete characterization of congruence-simpleness for such Steinberg algebras, extending the well-known char
Autor:
Tom Hanika, Jens Zumbrägel
Publikováno v:
Graph-Based Representation and Reasoning ISBN: 9783319913780
ICCS
ICCS
In domains with high knowledge distribution a natural objective is to create principle foundations for collaborative interactive learning environments. We present a first mathematical characterization of a collaborative learning group, a consortium,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a92e6dec797e7aabf38a6a87cd609823
https://doi.org/10.1007/978-3-319-91379-7_10
https://doi.org/10.1007/978-3-319-91379-7_10
We give a sufficient condition for a bi-invariant weight on a Frobenius bimodule to satisfy the extension property. This condition applies to bi-invariant weights on a finite Frobenius ring as a special case. The complex-valued functions on a Frobeni
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38de7bea7bea989f4daf3c0488135d8a
http://arxiv.org/abs/1711.09939
http://arxiv.org/abs/1711.09939
In this paper, we provide a complete description of congruence-semisimple semirings and introduce the pre-ordered abelian Grothendieck groups $K_0(S)$ and $SK_0(S)$ of the isomorphism classes of the finitely generated projective and strongly projecti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1297c9575d4850e5761960117374db06
http://arxiv.org/abs/1711.05163
http://arxiv.org/abs/1711.05163
Autor:
Andreas Kendziorra, Jens Zumbrägel
Publikováno v:
Journal of Algebra. 388:43-64
Since for the classification of finite (congruence-)simple semirings it remains to classify the additively idempotent semirings, we progress on the characterization of finite simple additively idempotent semirings as semirings of join-morphisms of a
Finite Frobenius rings have been characterized as precisely those finite rings satisfying the MacWilliams extension property, by work of Wood. In the present note we offer a generalization of this remarkable result to the realm of Artinian rings. Nam
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::480b50170c55f123528af1cdca3066ff
Publikováno v:
Designs, Codes and Cryptography. 66:145-156
The Equivalence Theorem states that, for a given weight on the alphabet, every linear isometry between linear codes extends to a monomial transformation of the entire space. This theorem has been proved for several weights and alphabets, including th
Publikováno v:
Designs, Codes and Cryptography. 66:3-16
In this article we investigate Berlekamp's negacyclic codes and discover that these codes, when considered over the integers modulo 4, do not suffer any of the restrictions on the minimum distance observed in Berlekamp's original papers: our codes ha